
Assignment 2: Safe to the Last Command
15-316 Software Foundations of Security and Privacy

Due: 11:59pm, Thursday 2/15/18
Total Points: 50

1. Verification conditions (15 points). Recall that a verification condition for a program path
α1; . . . ;αn is a formula of arithmetic whose validity implies the validity of the DL formula rα1; . . . ;αnsP ,
for some P . Consider the following program that we will denote α:

i := 0;

while(i < k) {

if(i < 0) { i := k; }

if(0 <= Mem(i)) { x := x + Mem(i); }

i := i + 1;

}

Part 1 (5 points). Assume that k is a constant that we fix in advance. How many verification
conditions are required to check rαs0 ď x, as a function of k? Explain the rationale behind your
answer.

Part 2 (10 points). List the verification conditions for k “ 2. Note that it is not necessary to conduct
a sequent calculus proof for this problem, and you will receive full credit for listing out the paths and
their corresponding verification conditions. It is also not necessary to say whether the VCs are valid
or not.

2. Unfinished business (10 points). In lecture 7, we discussed two cases of the structural induction
used to prove the security of SFI. Complete the inductive case for conditional commands. That is,
assuming that Equation 1 is valid for α and β whenever 0 ď sl ď px & shq | sl ď bh ă U :

@i. psl ď i ď shq ^ Mempiq “ vi Ñ rαsMempiq “ vi (1)

Prove that it is also valid for ifpQqα elseβ.

3. Leaky sandbox (20 points). Consider the following language, which resembles a simplified assembly
language.

andpx, yq Take the bitwise-and of variables x and y, store the result in x
orpx, yq Take the bitwise-or of variables x and y, store the result in x
x :“ y Copy the value stored in y to x
x :“ Mempyq Read the memory at address stored in variable y, save result in x
Mempxq :“ y Store the value in y at the address pointed to by x
ifpQq jumpx If Q is true in the current state, jump to the instruction pointed to by x

Programs in this language are sequences of instructions indexed on integers 0 to n, and we refer to the
instruction at index i of program Π with the notation Πi. Note that there are no expressions in this
program. Results of operations are stored in variables, and can be moved into memory when necessary.
Think of variables as acting like registers, so to implement the computation w :“ px & yq | z from our
language in lecture we would write the program:

1 : andpx, yq
2 : orpx, zq
3 : w :“ x

It is not valid to write w :“ orpandpx, yq, zq because neither orpandpx, yq, zq or andpx, yq is a variable.



Part 1 (10 points). We want to implement a sandboxing policy for this language using software fault
isolation. So the proposal is to replace all memory read and write operations as follows. Assume that
sl “ 0x15316000 and sh “ 0x15316fff, so the memory sandbox is contained in the range of addresses
0x15316000´ 0x15316fff.

x :“ Mempyq becomes
andpy, 0x15316fffq
orpy, 0x15316000q
x :“ Mempyq

Mempxq :“ y becomes
andpx, 0x15316fffq
orpx, 0x15316000q
Mempxq :“ y

Additionally, we want to prevent indirect jumps from leaving a code sandbox restricted to the range
of instruction addresses 0x00000a00´ 0x00000aff. So each indirect jump is rewritten as follows.

ifpQq jumpx becomes
andpx, 0x00000affq
orpx, 0x00000a00q
ifpQq jumpx

Any untrusted code is rewritten using these rules prior to being executed. Unfortunately, we were on
a tight deadline and didn’t have time to prove that this implementation of SFI is secure. Explain why
this instrumentation still allows untrusted code to read and write outside the memory sandbox, and
provide an example program in the language that violates the policy.

Part 2 (15 points). Propose an alternative implementation in this language for the policy in Part 1
that is secure. You may assume that the untrusted code is not allowed to modify some variables that
you select, but be sure to state any assumptions about what invariants must hold of those variables
for your implementation to be secure.

4. (Extra Credit) Tough conditions (5 points). As discussed in lecture 5, symbolic execution can
be used to find inputs that drive a program down a particular path. It does this by generating the
corresponding path condition, and checking it for satisfiability. If the path condition is satisfiable, then
it generates a model, or satisfying assignment to the variables. When this assignment is used as the
input to the program, it will necessarily end up taking the path used to derive the condition.

However, this is all contingent on being able to first determine the satisfiability of the path condition
and then subsequently generating a satisfying assignment. The decision procedures used to do this are
subject to the same laws of computability as any other algorithm, and so there is no guarantee that
they will be able to provide answers for every path condition.

Write a short program for which it is unlikely that a decision procedure will be able to produce
satisfying assignments to drive execution down at least one path. Your program is allowed to call
outside functions, e.g. Fibpnq to return the nth Fibonacci number, but be sure to describe precisely
what any such external function computes, and why it is unlikely that a decision procedure will be
able to solve the resulting path conditions.


