
Assignment 4: Relaxed Secrecy and Privacy
15-316 Software Foundations of Security and Privacy

Due: 11:59pm, Thursday 4/12/18
Total Points: 50

1. Safe or unsafe relaxation (15 points).

For the declassification operators defined below, determine whether an attacker can always use it to
figure out the value of an n-bit string pin in polypnq time. If so, describe how. If not, prove why doing
so is impossible using a similar argument to the one for match covered in lecture. All declassification
operators below have the same typing rule as match.

• (5 points) Greater than: gtpguess, pinq evaluates true if and only if guess, interpreted as an
integer, is greater than the n-bit string pin, interpreted as an integer.

• (5 points) Error-correcting match: ecmpguess, pinq evaluates to true if and only if guess is an
n-bit string that differs from the n-bit string pin by at most 1 bit.

• (5 points) Prefix: prefpguess, pinq evaluates to true if and only if guess is a prefix of the n-bit
string pin.

2. Primitive badness (15 points).

RSA is a public key cryptosystem that performs encryption by taking powers modulo N of an exponent
e, and decryption by taking powers modulo N of an exponent d. The details of how N , e and d are
chosen are not important for this problem, but the pair pe,Nq is the public key and d is the secret
private key. To encrypt a plaintext message M , one computes the ciphertext C “ modpMe, Nq.
Likewise to perform decryption given C to recover M , one computes M “ modpCd, Nq. Thus modular
exponentiation lies at the core of the algorithm, so is the essential primitive needed to implement RSA.

The program below implements modular exponentiation using the square-and-multiply method1. Given
ciphertext C, the approach iterates over each bit j of the L-bit private decryption key d, squaring (mod
N) the ciphertext at each step. If the current bit drjs is 1, then the current result is multiplied by
the original ciphertext (again mod N). The modulo operation here is implemented in a very simple
manner by repeated subtraction.

x := C;

for(j in 0 to L-1) {

x := x * x;

while (N <= x) { x := x - N; }

if (d[j] = 1) {

x := x * C;

while (N <= x) { x := x - N; }

}

}

Assuming that all variables except d are public and j is initialized to 0, this modular exponentiation
program contains a timing side channel. Explain what it is. Then, given the following timings for each
initial value of C below where L = 4 and N = 16, recover the value of d that led to these observations.
You should assume that each arithmetic operation, comparison, and assignment takes one unit of time,
and that the for loop does not take a unit of time to increment j.

1You may notice that this code only works when N is relatively prime to C. This is a reasonable assumption for reasons
beyond the scope of the assignment, but if you are interested in learning more then we recommend reading Introduction to
Modern Cryptography, Second Edition, Chapter 3, by Katz and Lindell
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3. Constant-time fix (10 points). Fix the timing channel in the program from Part 2 so that the
runtime no longer depends on the value of d. If it helps make your answer more clear, you can assume
that the language contains a modpx,Nq primitive, but you must also assume that it runs in
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of time. What is the runtime of your fixed implementation?

4. Randomized enough? (10 points). Recall the randomized response mechanism discussed in
Lecture 14. It flips a fair coin (i.e., one with equal probability 1{2 or returning 0 or 1). If the coin
comes heads, then it returned the contents of Mem(0) (which we assumed to be either 0 or 1). If the
coin comes up tails, then it flips another fair coin and returns the value. We saw that this satisfies
lnp3q-differential privacy.

Consider the following variant, which computes a function of both Mem(0) and Mem(1).

b :“ flipppq
if b “ 1 then
o :“ Memp0q

else
o :“ flipppq ` Memp1q

(1)

Use Definition 2 from Lecture 14 to answer this question. Does this program satisfy differential privacy
for any value of ε ą 0? If so, explain why. If not, give a counterexample pair of neighboring databases
for which the bound in Equation 8 (Lecture 14) cannot hold for any ε ą 0, and explain how to modify
the program to make it satisfy differential privacy.


