
Bounded model checking C code

1

1 A brief introduction to the C Bounded Model Checker

1.1 Setting up the model checker

You do not need to install any software to complete this lab. The course staff has

set up an installation of CBMC on AFS, which can be accessed on an SSH session to

linux.andrew.cmu.edu or linux.gp.cs.cmu.edu, or on a CS cluster machine. The bi-

nary is located at /afs/cs.cmu.edu/academic/class/15414-f17/cbmc/cbmc, and should

run as-is. We recommend adding /afs/cs.cmu.edu/academic/class/15414-f17/cbmc to

your PATH variable, so that you can run the model checker by simply invoking cbmc.

Before getting started with the lab, please test the command. If you do not see the

following output, let the course staff know immediately.

andrewid@linux1:~$ cbmc

CBMC version 5.8 64-bit x86_64 linux

Please provide a program to verify

Installing CBMC on your own machine. While it is possible to install CBMC on

your own machine, we do not recommend doing so as this may lead to delays in your

completing the assignment. Because an installation is available on AFS, the course staff

will not be able to spend time helping you debug a failed installation on a personal machine.

Binaries and installation instructions for Windows, MacOS, and Windows are available at

http://www.cprover.org/cbmc/. However, if you attempt to use these and installation

does not work on your machine immediately, please revert to using the AFS installation.

1.2 Using CBMC

We will illustrate the use of CBMC to find bugs or verify their absence by applying it to

the toy example from Lecture 19, which is shown in Figure 1. The first thing to note is

that we have placed the code in the main function. Being a C function, CBMC expects the

entry point of the program to reside in main. If the file given to CBMC has no main, and

an alternate entry point isn’t provided with the function command-line argument, then

CBMC will finish without verifying anything.

2

http://www.cprover.org/cbmc/

int N, x;

int main() {

int i = N;

while(0 <= x && x < N) {

i = i - 1;

x = x + 1;

}

__CPROVER_assert(0 <= i, "postcondition");

}

Figure 1: Toy example program from Lecture 19

The next thing to note is the call to CPROVER assert. This is the primary form of

user-defined specification supported by CBMC. When the model checker is invoked, it will

attempt to verify that the condition given as the first argument holds on all paths up to a

specified bound. If no bound is given on the command line, CBMC will attempt to infer an

upper bound on the program’s execution depth, and verify the program after unwinding.

The second argument to CPROVER assert is a diagnostic string that will be reported in

the results if CBMC finds a counterexample for the assertion.

Let’s run the model checker on this example. For now, we will not specify an unwinding

bound, and let CBMC try to infer the bound on its own. The results are shown in Figure 2.

Surprisingly, we see that CBMC concluded with a VERIFICATION SUCCESSFUL message!

This is contrary to what we saw in class when we worked this example out, where we found

a counterexample at N = −1,x = 0. Why didn’t CBMC find this bug? Notice that N

and x are not initialized. Because they are static globals, CBMC assumes that they are

initialized to 0 by default. This is not necessarily a safe assumption to make, and there are

two primary ways to address it.

The first approach is to pass the command-line argument nondet-static, which tells

CBMC to assume that any variable with static lifetime is initialized to a nondeterministic

value. The second approach is to introduce the nondeterminism ourselves. We can do this

by declaring a function with no body in the source file being analyzed, i.e., an external

function. To deal with external code without making unwarranted assumptions, CBMC

assumes that any values returned from such code can take any value. Figure 3 is updated

3

andrewid@linux1:~$ cbmc toy1.c

CBMC version 5.8 64-bit x86_64 macos

Parsing toy1.c

Converting

Type-checking toy1

Generating GOTO Program

Adding CPROVER library (x86_64)

Removal of function pointers and virtual functions

Partial Inlining

Generic Property Instrumentation

Starting Bounded Model Checking

size of program expression: 38 steps

simple slicing removed 0 assignments

Generated 1 VCC(s), 0 remaining after simplification

VERIFICATION SUCCESSFUL

Figure 2: CBMC output on toy example program from Figure 1

int nondet_int();

int N, x;

int main() {

N = nondet_int();

x = nondet_int();

int i = N;

while(0 <= x && x < N) {

i = i - 1;

x = x + 1;

}

__CPROVER_assert(0 <= i, "postcondition");

}

Figure 3: Toy example with nondeterministic initialization.

4

to reflect this approach, by declaring an external function nondet int and calling it to

initialize N and x at the beginning of main.

If we run the model checker again on the updated program, we see a large amount of

output that fails to terminate.

andrewid@linux1:~$ cbmc toy1.c

CBMC version 5.8 64-bit x86_64 linux

...

Unwinding loop main.0 iteration 1785 file toy1.c line 7 function main thread 0

Unwinding loop main.0 iteration 1786 file toy1.c line 7 function main thread 0

Unwinding loop main.0 iteration 1787 file toy1.c line 7 function main thread 0

...

This is due to the fact that we did not specify an unwinding depth; CBMC attempts

to find a bound on the depth of the loop, but is unable to do so because N is initialized

nondeterministically to take any integer value. We address this by passing --unwind 3 on

the command line, telling CBMC to unroll the loop at most three times. We now see the

following (note that some of the output has been omitted to save space).

andrewid@linux1:~$ cbmc toy1.c --unwind 3

Solving with MiniSAT 2.2.1 with simplifier

1019 variables, 3727 clauses

SAT checker: instance is SATISFIABLE

Runtime decision procedure: 0.006s

** Results:

[main.assertion.1] postcondition: FAILURE

** 1 of 1 failed (1 iteration)

VERIFICATION FAILED

This is the result we expected to see, knowing that the assertion should not always

hold. We see that CBMC generated a SAT instance with 1019 variables and 3727 clauses,

and found it to be satisfiable. This corresponds to a violation of the assertion labeled

postcondition, which is the property we wished to check.

5

In order to see a counterexample for this bug, we pass the command-line argument

--trace. The output is shown below.

andrewid@linux1:~$ cbmc toy1.c --unwind 3 --trace

Trace for main.assertion.1:

State 20 file toy1.c line 4 function main thread 0

--

N=-1073741824 (11000000000000000000000000000000)

State 21 file toy1.c line 5 function main thread 0

--

x=-1073741825 (10111111111111111111111111111111)

State 22 file toy1.c line 6 function main thread 0

--

i=0 (00000000000000000000000000000000)

State 23 file toy1.c line 6 function main thread 0

--

i=-1073741824 (11000000000000000000000000000000)

Violated property:

file toy1.c line 11 function main

postcondition

0 <= i

Among other things, the counterexample trace tells us that N is initialized to −1073741824

on line 4 in main, i is initialized to 0 on line 6, and subsequently updated to the same value

as N on the same line. The trace then ends with the violated property, bypassing the loop

entirely. Note that i is updated twice; the first instance corresponds to the declaration of

i, where it is given the default value 0. The second corresponds to the initialization to N,

which is the source of the bug.

Environment assumptions. Before moving on, we introduce the specification primitive

CPROVER assume(Q). Like CPROVER assert, the argument to CPROVER assume is a

Boolean condition. CBMC interprets a call to this function slightly differently: any path

6

that does not satisfy the condition passed to CPROVER assume is discarded from the

analysis. Importantly, if such a path later contains a safety violation, it is not reported

in the results. This can be useful when modeling assumptions about the environment, for

example if we have reason to believe that the arguments passed to a function will always

satisfy certain conditions.

In the present example, if we place a call to CPROVER assume(0 <= N && N < 3);

immediately after the intitialization of N on line 4, then CBMC will return VERIFICATION

SUCCESSFUL. Furthermore, if we tell CBMC to insert unwinding assertions by passing the

command-line argument --unwinding-assertions, then we can conclude that there are

no bugs up to the given unwinding depth, and that the unwinding depth is sufficient for

exhaustive verification.

andrewid@linux1:~$ cbmc toy1.c --unwind 3 --unwinding-assertions

** Results:

[main.assertion.1] postcondition: SUCCESS

[main.unwind.0] unwinding assertion loop 0: SUCCESS

** 0 of 2 failed (1 iteration)

Array bounds and pointer checking. This lab will have you verify the absence of

memory errors in two C programs. It is possible to do this by inserting appropriate calls

to CPROVER assert before array and pointer accesses, as in the following example.

char buf[100];

int i = get_index();

__CPROVER_assert(0 <= i && i < 100, "array bounds check");

printf("%d", buf[i]);

However, CBMC will automatically insert these checks for you when given the command-

line arguments --bounds-check and --pointer-check. You may want to use the com-

mand line argument --slice-formula to speed model checking. --trace provides ex-

tra information for any bugs found.Before starting the lab, please read the tutorial at

http://www.cprover.org/cprover-manual/cbmc.shtml, which provides more informa-

tion about the use of these arguments. Further documentation is available at http:

7

http://www.cprover.org/cprover-manual/cbmc.shtml
http://www.cprover.org/cprover-manual/

//www.cprover.org/cprover-manual/.

8

http://www.cprover.org/cprover-manual/

	A brief introduction to the C Bounded Model Checker
	Setting up the model checker
	Using CBMC

