
15-316 Lab 1 1

Instructor: Matt Fredrikson TA: Tianyu Li

Due date: March 9 11:59pm
Total points: 100

Lab 1: Pinning Down Safety

1 Introduction

Unfortunately, it looks like your first attempt at no-so-tiny server had some serious security prob-
lems. This is especially frustrating after you spent much time making sure you code is free of
memory safety issues. To make matters worse, your users have been complaining about the server’s
rather limited functionality—they want to do more involved computations on the server’s data.
Some of your colleagues have also noted that it is not a sound business move to continue providing
this service for free, and have implemented a logging component that keeps track of the connections
made to the server so that you can later send them a bill.

Rather than extending functionality by adding new binaries to cgi-bin, you will allow users to
submit jobs for the server in a limited interpreted language. It has facilities for reading and writing
variables, branching on conditions, looping, and displaying results. All variables are backed up by
the same key-value store implemented in the last lab, so that scripts’ state can be saved to disk and
later retrieved to use by other scripts. Better yet, all of these programs will be interpreted by a single
program that you will carefully implement to make sure there aren’t any security vulnerabilities.

By confining users to this scripting language, you achieve a substantial improvement in the security
of the server over the previous approach of running cgi-bin binaries. The language is very limited
in functionality, so the potential damage is also limited. The server no longer needs to call execve
on untrusted input, and the language’s syntax places natural restrictions on the data that can end
up in the server’s .db files. Moreover, programs in the language are much easier to reason about
than binary or even C programs, so there may be opportunities to develop additional safeguards
using principled techniques when additional security demands arise in the future.

However, you should not be totally comfortable with this solution just yet, as the security of your
server now rests on your trust in the interpreter’s implementation. Especially concerning is the
code responsible for interpreting untrusted scripts. You will also implement a sandbox for the
interpreter to make sure that the impact of any vulnerabilities is contained. You will do this using
a tool called Pin that instruments binary programs dynamically.

Learning goals. As you complete this lab, you will:

• Gain experience translating formal semantics to an implementation by writing an interpreter
for a small domain-specific language.

• Develop a deeper understanding of safety policy enforcement techniques by implementing a
sandbox that enforces security automata and (optionally) SFI.

• Gain experience with a practical code instrumentation tool (Pin) that is widely used in
industry and research.

• Practice writing secure imperative code by extending the functionality of your server.

1

15-316 Lab 1 2

Evaluation. This lab is worth 100 points, and will be graded by a combination of test cases
and manual inspection by the course staff. The test cases will (i) evaluate the correctness of your
interpreter absent any security considerations, and (ii) evaluate the extent to which your sandbox
achieves the goals described in these instructions by attempting to exploit likely vulnerabilities that
violate the safety policy. The point breakdown is as follows.

Correct interpreter (40 points, 5 possible extra credit). The interpreter must implement
the language semantics as given in this document, producing the exact output described in
these instructions. Partial credit will be given based on how many test cases passed, and in
situations where very few tests yield the correct output, manual inspection.

Correct sandbox implementation (55 points, 15 possible extra credit). The sandbox im-
plementation is mostly contained in a Pintool that instruments the interpreter’s binary code,
but parts of the interpreter must also be written in a way that interacts correctly with the Pin-
tool. When running in your sandbox, the interpreter should still pass all of the functionality
test cases, and terminate the interpreter in cases where the policy would be violated.

Discussion (5 points) A brief discussion of your solution, including the assumptions and other
security considerations that you made when implementing it.

What to hand in. When you have completed the lab, you should hand in a .zip archive of
the same directory tree contained in template, but with your completed solution filled into the
appropriate files. As discussed in Section 2, most of the necessary changes are in sandbox/em.cpp,
src/common/extendible_hash.c, src/common/ubarray.c, and src/tinyscript/interp.c. Make
sure that the archive you hand in has your implementation in these files! Do not hand in the
entire Pin kit! Rather, take your completed em.cpp from the Pin kit directory tree, and replace
the template em.cpp with it. Do not hand in binaries! It is recommended to build everything
in a build subdirectory (see Section 2.1), so that you can easily delete it before handing in.

Finally, if you are doing the extra credit parts, provide a EC README file detailing the tasks you
have chosen to complete. Don’t forget to hand in any test cases for the interpreter that you develop
for possible extra credit (Section 3), in src/tinyscript/testscripts.

Important! The template code provided to get you started with your sandbox implementation
makes several platform-specific assumptions about the operating system’s binary executable format,
as well compiler features present on the system. It has been developed and tested on the Andrew
Linux cluster machines (linux.andrew.cmu.edu), and will be graded on the same. It may not
compile or function correctly on your personal machine, and you are encouraged to complete
this lab entirely on the Andrew Linux cluster!

2

15-316 Lab 1 3

2 Getting started

The template directory contains template code to get you started on this lab. The following map
lays out what is provided. Red files and directories are essential infrastructure that you should not
modify as doing so is likely to break your implementation. Green files are those that you completed
as part of the previous lab, and should replace with your code before attempting to compile. Blue
files are those in which you will spend most of your time implementing the lab.

template

CMakeLists.txt...Build file, do not modify
sandbox..Template sandbox implementation

em.cpp..Template Pintool
makefile...Pin build file, do not modify
makefile.rules ..Pin build file, do not modify

src...Template server and interpreter
common...Common library for server

CMakeLists.txt...Build file, do not modify
csapp.c..Robust IO routines
extendible hash.c.............................Your memory-safe extendible hash
safemem.c...Sandbox memory manager
ubarray.c....................................Your memory-safe unbounded array

include..Header files
common..Definitions for common library

csapp.h..Definitions for robust IO
extendible hash.h............................Your extendible hash definitions
safemem.h...............................Sandbox memory manager definitions
ubarray.h...................................Your unbounded array definitions

tinyscript...Definitions for interpreter
ast.h..Abstract syntax tree definitions
interp.h ... Interpreter definitions

server..Core server implementation
CMakeLists.txt...Build file, do not modify
client.c.................................Simple client to test server functionality
tiny.c..Server implementation

tinyscript..Interpreter
CMakeLists.txt...Build file, do not modify
ast.c.....................................Functions to build abstract syntax trees
interp.c..Core interpreter routines
interp main.c...Interpreter shell
parserParser implementation, do not modify

lexer.l.........................Rules for scanning strings containing programs
parser.y..Grammar for language syntax

testscripts................................Example programs to test interpreter

3

15-316 Lab 1 4

2.1 Build Infrastructure

The template code uses CMake, which generates all of the necessary makefiles after ensuring that the
system has the necessary dependencies. One benefit of using CMake in a larger implementation like
this is that one can easily place the generated makefiles, object files, and executables in a separate
directory heirarchy. After making numerous changes to the implementation, it is straightforward
to start with a fresh build by deleting this directory heirarchy.

To use CMake to build this lab, enter the top-level template directory, and create a fresh build

directory. Then generate the makefiles with the command cd build && cmake .., which will
result in a number of subdirectories of interp/build being created with fresh makefiles. Finally,
from the build directory, run the make command. You should see approximately the following
output, and if you do not then please contact the course staff immediately.

[user@unix template]$ mkdir build

[user@unix template]$ cd build && cmake ..

-- The C compiler identification is GNU 4.8.5

-- The CXX compiler identification is GNU 4.8.5

-- Check for working C compiler: /usr/lib64/ccache/cc

-- Check for working C compiler: /usr/lib64/ccache/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: /usr/lib64/ccache/c++

-- Check for working CXX compiler: /usr/lib64/ccache/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Looking for include file pthread.h

-- Looking for include file pthread.h - found

-- Looking for pthread_create

-- Looking for pthread_create - not found

-- Looking for pthread_create in pthreads

-- Looking for pthread_create in pthreads - not found

-- Looking for pthread_create in pthread

-- Looking for pthread_create in pthread - found

-- Found Threads: TRUE

-- Found BISON: /usr/bin/bison (found version "3.0.4")

-- Found FLEX: /usr/bin/flex (found version "2.5.37")

-- Configuring done

-- Generating done

-- Build files have been written to: /afs/andrew.cmu.edu/usr8/usr/template/build

[user@unix template/build]$ make

[28%] Built target common

Scanning dependencies of target tinyscript

[35%] Building C object src/tinyscript/CMakeFiles/tinyscript.dir/interp_main.c.o

Linking C static library libtinyscript.a

[78%] Built target tinyscript

Scanning dependencies of target interp

[85%] Building C object src/tinyscript/CMakeFiles/interp.dir/interp_main.c.o

Linking C executable interp

[85%] Built target interp

[92%] Built target client

Linking C executable server

[100%] Built target server

Each time you build your solution, you can simply run make from build if you do not wish to build
from scratch. To clean and rebuild, simply remove template/build and repeat this process.

4

15-316 Lab 1 5

2.2 Setting up Pin

Pin is a dynamic binary instrumentation framework1) that provides an API for creating dynamic
analysis tools. Analysis tools created using Pin are called Pintools, and tell Pin’s just-in-time
compiler how to insert instrumentation into a target executable. Importantly, Pintools can be
applied without recompiling the target executable.

Installing the kit. To implement the sandbox for this lab, you will need to download the ap-
propriate Pin kit to your AFS home directory. The following commands will download the kit and
move it to a directory called pin. It is recommended that you do this outside of the template

directory, as you should not hand the entire Pin kit in with your final solution.

[user@unix ~]$ wget https ://goo.gl/yyFBAh; mv yyFBAh pin.tar.gz; tar xzf pin.tar.gz

[user@unix ~]$ mv pin -3.6 -97554 - g31f0a167d -gcc -linux pin

The directory pin now contains the following tree, with parts that are particularly relevant high-
lighted and expanded.

pin

doc

extlicense

extras

ia32

intel64

LICENSE

pin................................Pin executable, used to apply Pintools to applications
README

redist.txt

source

include

launcher

tools..Directory containing Pintools

Building example Pintools. Enter the subdirectory source/tools/SimpleExamples, and ex-
ecute make to build all of the example Pintools in this directory. Alternatively, set the environment
variable PIN ROOT to your pin distribution before running make, and the pintool will be made in
the directory you called make from. If the build does not complete successfully, make sure that you
are in fact running on one of the Andrew Linux machines, and if so, contact the course staff
immediately. A successful build should end with the following output.

make [1]: Leaving directory ‘/afs /.../ pin/source/tools/SimpleExamples ’

If the examples built correctly, then you should see a directory named obj-intel64 containing a
number of .so, .o, and .exe files. The Pintools are in the .so files, and despite their Windows-ish
extensions, the .exe files contain valid executable test applications.

1See the lecture notes from 2/13 for background on this technique

5

https://15316-cmu.github.io/lectures/09-automata.pdf

15-316 Lab 1 6

Running Pintools. To use a Pintool on an application, run the pin binary in the top-level Pin
kit directory passing the .so of the Pintool with the flag -t. The target application is given on
the command line after --, along with any arguments. Try running the calltrace Pintool on any
program, e.g., ls.

[user@unix SimpleExamples]$../../../ pin -t obj -intel64/calltrace.so -- ls .

Running wc -l calltrace.out when it finishes should indicate that ls made approximately 10,000
function calls during its execution. You can also tell Pin to follow children spawned by execv using
the flag -follow_execv, which you will need to do to ensure that the interpreter spawned by tiny

is instrumented.

Set up the template sandbox. To compile your sandbox Pintool, it is easiest to move the
template/sandbox directory into the pin/source/tools directory. Then you can use the same
commands to build your solution Pintool as we used to compile the tools in SimpleExamples, i.e.,
just run make. The tool will then be found in pin/source/tools/sandbox/obj-intel64/em.so.
Note that the build infrastructure for the server and interpreter will not automatically
make your Pintool!

You may find it helpful to define a few environment variables to save keystrokes when working on
both the Pintool and server.

PINROOT The directory containing the pin binary.

SBOXROOT The directory containing your sandbox code, i.e. pin/source/tools/sandbox.

SBOXBIN The directory containing your sandbox Pintool, i.e. $SBOXROOT/obj-intel64.

Finally, you probably want to set your PATH to point to PINROOT.

Useful links

Pin kit for 32 and 64-bit Linux. Tarball containing the Pin kit you should use to complete
this lab on Andrew Linux machines. For convenience using wget to download it to your
home directory over an SSH session, it can be accessed by the following shortened URL:
https://goo.gl/yyFBAh.

ASPLOS 2008 Pin tutorial. Good tutorial to understand the basics of Pin. It is strongly
recommended that you read the first 11 pages of this tutorial, as well as the
section titled “Build Your Own Pin Tool – strace Using Pin” prior to starting the
sandbox portion of this lab.

Pin User’s Manual. The user’s manual has detailed information on all of Pin’s features and API
routines. If you encounter problems using Pin to develop your sandbox, consult this reference
before asking the course staff for assistance.

Pin main website. This website is the main trustworthy source of information about Pin. Ad-
ditional tutorials and technical documentation are available here.

6

http://software.intel.com/sites/landingpage/pintool/downloads/pin-3.6-97554-g31f0a167d-gcc-linux.tar.gz
https://goo.gl/yyFBAh
https://software.intel.com/sites/default/files/article/256675/asplos2008-handson.pdf
https://software.intel.com/sites/landingpage/pintool/docs/97554/Pin/html/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

15-316 Lab 1 7

3 Task 1: Implement the Interpreter

Your first task after getting set up and familiarizing yourself with Pin is to implement an inter-
preter for a simple imperative language. The context-free grammar below is a complete syntactic
description of the language you are to implement. Each rule consists of a non-terminal identi-
fier, given in bold-face font and surrounded by angular brackets (e.g., 〈com〉), followed by one or
more production rules. Elements in typewriter font (e.g., exit) are terminals, and correspond to
keywords and punctuation required by the language.

〈prog〉 ::= using table : 〈com〉
〈com〉 ::= skip // do nothing

| x := 〈aexp〉 // assignment
| undef(x) // remove variable
| output 〈aexp〉 // print expression value
| 〈com〉;〈com〉 // composition
| if 〈bexp〉 then 〈com〉 else 〈com〉 endif // conditional
| while 〈bexp〉 do 〈com〉 done // loop

〈aexp〉 ::= c // integer constant
| x // variable identifier
| (〈aexp〉) // parenthesized expression
| 〈aexp〉 + 〈aexp〉 // addition
| 〈aexp〉 - 〈aexp〉 // subtraction
| 〈aexp〉 * 〈aexp〉 // multiplication

〈bexp〉 ::= true | false // boolean constants
| hasdef(x) // check that variable is defined
| !〈bexp〉 // negation
| (〈bexp〉) // parenthesized expression
| 〈bexp〉 && 〈bexp〉 // conjunction
| 〈bexp〉 || 〈bexp〉 // disjunction
| 〈aexp〉 == 〈aexp〉 // equality
| 〈aexp〉 <= 〈aexp〉 // inequality

Programs begin by declaring the .db file containing the state on which they will execute, with
the syntax using table : ..., following by a command containing the operations to perform on the
state. Note that the filename is not in quotation marks, and is immediately preceded by a colon.
Whitespace is ignored in programs. You should also make sure that your program file
always ends with a newline in the end.

Semantics. The primary component of program state is a mapping from variables to values, much
like in the languages we have discussed in lecture. There are two key differences from the states
that we have discussed in lecture. First, the variable mapping is partial, and may be undefined on
some variables. Second, programs in the server’s scripting language can output results by writing
to stdout. So a program state ω consists of two components, the partial variable mapping ωv and
output stream ωs. We model the output stream as a (possibly empty) sequence of integers, i.e.
ωs ∈ Z∗.
The semantics of the language are given in Figure 1. They are given in the big-step transition
style, described in lectures 10 and 11. There are three relatiions ⇓Z,⇓B, and ⇓ for arithmetic

7

15-316 Lab 1 8

Arithmetic expressions

〈ω, c〉 ⇓Z c
ωv(x) is defined ωv(x) = v

〈ω, x〉 ⇓Z v
〈ω, e〉 ⇓Z v
〈ω, (e)〉 ⇓Z v

〈ω, e〉 ⇓Z v1 〈ω, ẽ〉 ⇓Z v2
〈ω, e� ẽ〉 ⇓Z v1 � v2

Boolean expressions

〈ω, true〉 ⇓B> 〈ω, false〉 ⇓B⊥
ωv(x) is defined

〈ω, hasdef(x)〉 ⇓B>
ωv(x) not defined

〈ω, hasdef(x)〉 ⇓B⊥
〈ω, P 〉 ⇓B b
〈ω, !P 〉 ⇓B ¬b

〈ω, P 〉 ⇓B b
〈ω, (P)〉 ⇓B b

〈ω, P 〉 ⇓B b1 〈ω,Q〉 ⇓B b2
〈ω, P && Q〉 ⇓B b1 ∧ b2

〈ω, P 〉 ⇓B b1 〈ω,Q〉 ⇓B b2
〈ω, P || Q〉 ⇓B b1 ∨ b2

〈ω, e〉 ⇓Z v1 〈ω, ẽ〉 ⇓Z v2
〈ω, P == Q〉 ⇓B v1 = v2

〈ω, e〉 ⇓Z v1 〈ω, ẽ〉 ⇓Z v2
〈ω, P <= Q〉 ⇓B v1 ≤ v2

Commands

〈ω, skip〉 ⇓ω
〈ω, e〉 ⇓Z v

〈ω, x := e〉 ⇓ω{x 7→ v}
〈ω, e〉 ⇓Z v ω′v = ωv ω′o = ωo, v

〈ω, output e〉 ⇓ω′

ωv(x) is defined ω′ = ω except x is undef. in ω′v
〈ω, undef(x)〉 ⇓ω′

ωv(x) is undef.

〈ω, undef(x)〉 ⇓ω
〈ω, α〉 ⇓ω1 〈ω1, β〉 ⇓ω2

〈ω, α;β〉 ⇓ω2

〈ω, P 〉 ⇓B> 〈ω, α〉 ⇓ω′

〈ω, if(P)α elseβ〉 ⇓ω′
〈ω, P 〉 ⇓B⊥ 〈ω, β〉 ⇓ω′

〈ω, if(P)α elseβ〉 ⇓ω′

〈ω, P 〉 ⇓B⊥
〈ω, while(P)α〉 ⇓ω

〈ω, P 〉 ⇓B> 〈ω, α; while(P)α〉 ⇓ω′

〈ω, while(P)α〉 ⇓ω′

Figure 1: Semantics of the scripting language.

expressions, Boolean expressions, and commands, respectively. The judgement 〈ω, e〉 ⇓Z v denotes
that the arithmetic expression e evaluates to value v in state ω; 〈ω, P 〉 ⇓B b denotes that Boolean
expression P evaluates to value b (i.e., either > or ⊥) in state ω; and 〈ω, α〉 ⇓ω′ denotes that
command α terminates in state ω when started in state ω′.

Any valid execution of a command must have a corresponding derivation from the rules in Figure 1.
If no such derivation exists, then the program is “stuck” and cannot complete a valid execution.
For example, if we were to attempt to evaluate the program x := x + 1 in a state ω in which x is
undefined, then there would be no way to evaluate the right-hand side of the assignment using the
rules from Figure 1; there is no rule to evaluate variables when they are undefined. These cases
amount to aborted executions.

Reading and parsing programs. Programs are sent to the server over a network connection
as strings. A client is implemented for you in the server subdirectory to handle this. When the
main server loop in tiny.c receives a connection, it will do the following:

1. Log the connection’s time and client IP to a specified log file.

2. Read the string sent and save it in a temporary file.

3. Spin up a new interpreter via fork and exec of the interp binary.

8

15-316 Lab 1 9

4. Pass the temporary filename containing the network data to the newly-created interpreter.

The entry point of the interp is in interp_main.c. It simply reads the given filename from
disk into the fixed buffer pbuf, and calls parse_buf to obtain an abstract syntax tree (AST) of
the target program. Note that we are making an assumption about the length of the script we
are executing here. This is a simplifying assumption and it is okay to assume that the client
never sends a program longer than the size of the buffer. The AST is a data structure defined in
include/tinyscript/ast.h, and is a linked (tree) structure that contains all of the information
needed to interpret a program. The necessary functionality to parse a string containing a
syntactically-correct program into an AST has been provided as part of the template,
and you do not need to do anything more with this aspect of the implementation.

Interpreting programs. Once the program is in an AST stored in variable program, interp_main.c
does the following:

1. Uses the init_state function implemented in interp.c to initialize a new program state
from the specified database file (program->table).

2. Interprets the program’s command (program->command) using the interp_com function im-
plemented in interp.c.

3. If the program cannot be interpreted to its natural termination, prints an error message
and exits. Otherwise, writes the program state after evaluation to the same file as before
(program->table), using store_state implemented in interp.c.

The template provides initial implementations for init_state and store_state, and a skeleton
implementation of interp_com. Your task is to finish the implementation of interp com so
that the interp binary correctly interprets well-formed programs that are given to it,
starting in the state represented in the database file, and saves the final state back to
the given database file.

You should use the semantics in Figure 1 as your exclusive reference when implementing interp_com

and any functions that it depends on. The big-step transition rules translate into code naturally,
by implementing each syntactic construct as a set of cases corresponding to the antecedents of each
rule for that construct, returning values or updating state according to the consequent. To make
sure that you don’t miss any cases, you may find it helpful to cross off the corresponding rule in
this handout as you complete the corresponding implementation.

As you implement the interpreter, use the following guidelines to make sure that the server’s
behavior reflects changes to the script state.

• You are free to implement the partial variable mapping component of the state in any
way that you like, but you may find it easiest to rely on your previous implementation of
extendible_hash and ubarray. It is up to you to make sure these are bug-free, but you are
welcome to come and see us if you think there are lingering bugs in your code preventing you
from completing this lab. The template code has been set up accordingly, so if you wish to
use a different approach then you should remember to update init_state and store_state

accordingly so that mappings can be read from and written to disk before and after scripts
execute.

9

15-316 Lab 1 10

• You do not need to save the output stream component of state to disk. Rather, you should
ensure that changes to ωo are reflected on a new line of stdout as they occur. That is, each
time a new integer v is appended to ωo, print it to stdout any way you wish (e.g., printf)
with a newline at the end. The provided server and client code ensures that whatever you
print out to command line in the interpreter is sent back to the client.

• You will need to account for executions that cannot proceed according to the big-step transi-
tion rules, i.e. those that abort. For example, attempts to read a variable that is not defined
in the current state. For any such situation in which there is no valid way to proceed
with execution, the interpreter should stop immediately, and interp com should
return a negative code to signify aborted execution.

• If memory resources are exhausted while executing a command, then the interpreter should
stop its executing and interp_com should return a positive (non-zero) code to signify early
termination for reasons other than aborted execution.

Preventing DoS. You don’t want a user-provided script to exhaust resources on the server
indefinitely, thus mounting a denial-of-service attack on all the other users. You should take
steps to ensure that the interpreter stops executing divergent scripts rather than looping forever.
When the interpreter terminates execution for this reason, interp_com should return a positive
(non-zero) status code. You can implement this protection however you like, but your
implementation should allow scripts to execute either until they terminate naturally,
and otherwise for at least 10,000 commands.

Test it. As you implement the interpreter, don’t forget to write test cases to make sure you’ve
done it correctly. Whenever your implementation fails a test, it is likely that someone else’s
implementation will as well, but please do not share your test cases with other students. In-
stead, hand your test cases in with your final solution, naming them andrewid_test1.tiny,
andrewid_test2.tiny, . . . , and placing them in template/src/tinyscript/testscripts. These
should be well-formed programs that can be run directly as arguments to the interpreter. Handin
an additional Readme file if you think a test case is tricky in anyway and needs further explanation.
For each of your tests that surfaces a bug in another student’s implementation, you
will receive one point of extra credit on this lab (up to 5 points).

Scope of the task. At first glance, this might seem like a daunting amount of work. However, it
need not be, and the key to a good solution lies in not making the solution more complicated than
necessary. If your code in interp.c exceeds 500-600 lines (including the 350 lines with comments
provided in the template), then please get in touch with the course staff, as we may be able to help
simplify your solution.

10

15-316 Lab 1 11

4 Task 2: Sandbox the Interpreter

Having implemented the interpreter, it’s time to make sure that it doesn’t let bad things happen on
the server. You will use Pin to implement a sandbox that enforces two safety policies: (i) a system
call monitor, and (optionally) (ii) software fault isolation. If you have not already followed the
instructions in Section 2.2 and followed the tutorial linked at the end of that section,
then do so now before starting on this task.

4.1 System call monitor

Modern operating systems that run on conventional hardware, such as Linux and Windows, mediate
programs’ access to disk, network, display, and most other devices. There are numerous good
reasons to architect systems in this way, but one of the practical upshots of doing so is that
the impact of malicious programs that are under the influence of an attacker can be more easily
contained. If the operating system were to block access to all devices, then the only impact an
attack in a user’s program could have would be to change memory and registers, and these are
discarded when the program terminates anyway.

System calls are the mechanism by which programs interact with the operating system. Any
attempt to read or write files or sockets, manage memory, or use other devices must be sent to the
operating system by way of a system call. If you implemented it correctly, your interpreter will
make use of the following system calls.

File operations: Obviously the interpreter needs to open, read, write, and close files, and
printing to stdout is also implemented as writing to a file (with descriptor 0x1). These are
all system calls. Although you may not have used them explicitly in your code, the standard
library will also use stat, fstat, lstat, and poll, which return information about a file
descriptor or wait for an event on one. Finally, the interpreter may also use lseek to change
the position of the read/write pointer associated with a file descriptor.

Memory management: The operating system manages the virtual address space for processes.
One of the most common system calls made is brk, which changes the size of the data segment
to give the program more heap space. Programs also use mmap to map the contents of a file to
memory, and munmap to release such memory. Finally, mprotect changes the protection flags
on virtual memory. The interpreter may make use of all these system calls as it executes a
script.

Before the interpreter enters main, however, the loader will execute other syscalls on behalf of the
program to populate memory with the executable’s code and that of any libraries it uses. This will
involve the exec and access system calls.

Armed with the knowledge of how the interpreter should use system calls as it goes about its
business, your task is to implement a Pintool that makes sure the interpreter never strays from its
intended correct syscall behavior. You should extend the template in template/sandbox/em.cpp

to complete this part of the lab.

11

15-316 Lab 1 12

Part 1: Whitelist system calls. Given the above discussion, there is no good reason for the
interpreter to ever make a system call that is not in the following list after it has entered main:

open, read, write, close, stat, fstat, lstat, poll, brk, mmap, munmap, mprotect (1)

Your system call monitor should implement the following safety policy: after entering
the main function in the interp image, the program does not execute system calls other
than those in (1). To accomplish this, the tool will need to keep track of whether the main in
interp has been entered, as well as each system call that the program makes as it executes.

In order to implement the first part which tracks entry to main, your tool should scan all of the
routines in each image that is loaded, and use the RTN Name and IMG Name functions to determine
when to instrument the appropriate routine in the correct image. On finding the right routine, you
can instrument the entry and exit point of the function body using Pin’s RTN InsertCall API,
which places instrumentation that invokes a callback function inside your Pintool each time the
routine is entered or exited. This callback can maintain the necessary state to enforce the policy.
You should consult the documentation and tutorials listed in Section 2.2 to learn more about setting
up these callback functions in your Pintool.

To implement the second part you should make use of Pin’s system call API, which has been
simplified and improved since the writing of the ASPLOS 2008 tutorial referenced in Section 2.2.
You can use the PIN AddSyscallEntryFunction and PIN AddSyscallExitFunction to insert a
callback to your tool whenever a system call begins and ends executing, respectively. The signature
of the entry and exit callbacks is:

VOID Callback(THREADID thrIndex , CONTEXT *ctxt , SYSCALL_STANDARD std , VOID *v)

Where the arguments mean the following:

thrIndex: The Pin thread ID of the thread that executes the system call. You do not need to
worry about this, as the interpreter is single-threaded.

ctxt: The target application’s register state immediately before execution of the system call.

std: The calling standard of the system call instruction.

v: A value defined by the tool to pass to the callback. You can probably ignore this, unless you
think of something useful to put in this value.

Inside the callback, your monitor will need to examine the system call number, which identi-
fies the function being invoked, to determine its membership in (1). You can obtain this with
PIN GetSyscallNumber. A mapping from system call numbers to their corresponding names can
be found on github.com/torvalds, and is also defined in <sys/syscall.h>. Generally, including
this file will let you refer to system call numbers as SYS_name, so for example SYS_open is defined
to the number for open on the platform the tool is compiled for.

Finally, if the policy is violated, the monitor should terminate its target by calling exit.

Part 2: Stateful monitoring. Implementing the whitelist safety policy from Part 1 will prevent
someone from exploiting an unknown vulnerability, and then for example calling execve to load a
totally different executable from somewhere on the system, or opening new network connections to

12

https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__RTN__BASIC__API.html#gb274bf5dadf6f1ae3259715ae161ebd1
https://software.intel.com/sites/landingpage/pintool/docs/97438/Pin/html/group__IMG__BASIC__API.html#g491b26d161526b35498839f5cdf30a76
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__RTN__BASIC__API.html#g006ef964b9e6e4d8e7880231e216344a
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html#gb62f4c93284ca4219f53aa9c4ab4d545
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html#g8bf568a9177431df0939d478de94bb51
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html#g441fc7c57ea2f00024e35c8360af6b0d
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

15-316 Lab 1 13

wait for further instructions or transmit confidential information. But certain behaviors are still
permitted, such as opening and overwriting files on the server. We need to refine our safety policy
further to prevent a potential attack through these channels.

Make your syscall monitor more restrictive by implementing a safety policy that restricts the
file operations performed by the interpreter. In more detail, implement a policy that gives the
interpreter only what it needs in terms of file operations:

• Before executing any other file operations, the interpreter is allowed to open the file created
by the server containing the script to execute. It must only do so in mode O_RDONLY.

• While the script file is open, the only file operations permitted are fstat, lseek, read, and
close. The file descriptor used in these syscalls must be the same one returned by the open

on the script file.

• After closing the script file, it can open a .db file in the interpreter’s directory, and it must
use mode O_RDONLY|O_CREAT.

• While the database file is open, it may not write to any files, and it can only read from the
descriptor given from calling open on the .db file.

• After closing the .db file, the only file operations permitted are write and open. Moreover,
all write calls must be to file descriptor 0x1, and the only allowed open call is to the same
.db file as before in mode O_WRONLY|O_TRUNC.

• After calling open on the .db file for the second time, the only file operations permitted are
fstat, lseek, write, and close. The file descriptor used in these syscalls must be the same
one returned by the most recent open on the .db file.

You may find it helpful to write this policy out as a security automaton before implementing it
in code, both as a sanity check that you have understood the policy and as a guide for when you
implement.

In order to implement this policy, you will need to inspect the arguments passed to system calls.
You can do so with the PIN GetSyscallArgument API, which takes the current register context,
the system call convention, and the argument number. You can find more information on which
arguments to inspect by consulting the relevant man pages. In general, file operation syscalls take
file descriptors in argument 0, except for open which takes a C string denoting the filename in that
argument.

For arguments that contain pointers, your Pintool can access memory at the corresponding location
by casting an appropriate pointer variable. For example, to inspect the buffer in argument 0 of
open, the following code will suffice.

VOID Callback(THREADID thrIndex , CONTEXT *ctxt , SYSCALL_STANDARD std , VOID *v) {

if(PIN_GetSyscallNumber(ctxt , std) == SYS_open) {

char *fname = (char *) PIN_GetSyscallArgument(ctxt , std , 0);

if(! strcmp(fname , "/etc/passwd")) { ... }

}

}

Note that you may not have needed to use PIN_AddSyscallExitFunction to implement Part 1,
but you will need to use it here because system call return values are not available on entry, only

13

https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html#gd38043f1ae2f1198b7f3b233218593d4
http://man7.org/linux/man-pages/man2/syscalls.2.html

15-316 Lab 1 14

on exit. You will need to examine the return value of certain syscalls to keep track of returned file
descriptors, and can do so with PIN GetSyscallReturn.

When your monitor detects a policy violation, it should terminate the application as in Part 1.
Your final solution should enforce both policies from Parts 1 and 2.

4.2 Software Fault Isolation (Optional, Extra Credit: 15 points)

Pin is a powerful tool for analyzing and modifying the runtime behavior of binary applications. It
would be a shame to stop improving the security of the interpreter with the system call monitor, as
there are more possible attacks that this policy does not address. For example, the interpreter does
not need indiscriminate access to memory once it has been given a program, so perhaps we want
to make sure that while the interpreter is executing a script, its memory accesses all stay inside a
pre-defined sandbox region.

The build script provided in the template sets up a memory sandbox at addresses 0x18000000 –
0x18ffffff, which is managed by the memory allocation routines in safemem.c. Additionally, the
parser, scanner, and setup code in interp_main.c have been designed to make use of this sandbox,
so that all memory allocations made in those files will be confined to the sandbox region. All
that remains is to make small modifications to the functions involved with managing the variable
mapping, to ensure that they also use malloc, calloc, and free as implemented in safemem.c,
and to extend the Pintool to confine memory accesses appropriately.

For extra credit, complete this functionality in your sandbox execution monitor, em.cpp. In par-
ticular, make sure that when the primary interpreter function interp_com executes, none of the
memory reads or writes that it makes, with the few exceptions described below, access addresses
outside the range 0x18000000 – 0x18ffffff. Use the instrumentation techniques discussed in class
for SFI to rewrite all memory operands so that this policy is never violated.

• On Intel64 architectures, compilers generally manage function-local variables on the stack
pointed to by esp. Because your interpreter most likely uses function arguments and local
variables, your execution monitor will need to make an exception for accesses to stack memory.

• Some high-level language constructs, such as C’s switch statement, make use of read-only
memory outside of the main code section (.text on most Unix systems) to store the targets
of indirect jumps. This will result in legitimate memory reads outside of the sandbox, so you
may need to make exceptions for these cases.

• If your implementation of interp_com makes use of libraries, then it may invoke code that
accesses memory outside the sandbox. In practice, depending on the degree to which such
libraries are trusted, this may warrant an exception to the SFI policy. For this assignment,
you can assume that such libraries are trusted, and make an exception when library code
accesses memory outside the specified range.

Because this part of the lab is extra credit, the course staff will not answer all questions about this
task. We will answer questions about the specification of this particular SFI policy, but we will not
point you to the Pin API functions needed to implement it or help you debug this portion of the
assignment. If you choose to implement this policy, then you should consult the API documentation,
and also look for example Pintools that provide functionality similar to the components needed to
enforce this policy.

14

https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/group__PIN__SYSCALL__API.html#g2b7ff20cfdcb54df003635e693944da1

15-316 Lab 1 15

5 Task 3: Discussion

Write a brief report on your experience using PIN and discuss what you have achieved. Please
address the following points.

• What threat model do you need to assume in order for the sandbox to provide meaningful
protection? That is, what restrictions must you place on the attacker’s capabilities in terms
of making network connections, permissions on the server, filesystem rights, and anything
else that could possibly invalidate your sandbox?

• What specific assumptions must be made about the interpreter implementation to provide
reasonable security for the server? Given that your sandbox will run alongside the interpreter,
does it matter if the interpreter was written by a sleep-deprived developer who knows nothing
about security?

• What components, both within the server implementation as well as the operating system
running it, do you need to trust for your security guarantee to be warranted?

• Can you think of other security issues that might arise that are not covered by the safety
policy you implemented in em.cpp?

You do not need to write more than three or four paragraphs for this part of the lab. Additionally,
if one of your test cases from Section 3 mounts an attack on the server that is not prevented by the
security policy, please document it here with a summary of the steps leading to attack for another
point of extra credit (for up to two points on that test case!).

Your report does not need to consist of more than 3-5 paragraphs, and should be handed in in
template/report.txt (or template/report.pdf if you choose to typeset it).

15

	Introduction
	Getting started
	Build Infrastructure
	Setting up Pin

	Task 1: Implement the Interpreter
	Task 2: Sandbox the Interpreter
	System call monitor
	Software Fault Isolation (Optional, Extra Credit: 15 points)

	Task 3: Discussion

