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1 Introduction

Our foremost goal in this course is to prove that software systems obey security and
privacy policies. We will cover numerous different types of policies, but in general we
can think of a policy as a statement about what a program is allowed (or in some cases,
not allowed) to do. If we want to actually prove things about policies, then we need to
write them down precisely and in a way that allows us to use mathematical reasoning.
Propositional logic is a formal system that allows us to do this for a certain types of
simple policies.

For our purposes, propositional logic is a language for expressing statements (i.e.,
formulas) in terms of things that are either true or false (i.e., propositions) and a set
of rules, called semantics, for determining the truth value of a formula from the truth
values of its propositions. In future lectures, we will build on propositional logic to
support richer and more interesting types of policies.

In this lecture, we will study propositional logic and a deductive system called the
sequent calculus for proving the validity of propositional logic formulas. We will also
study important properties of the propositional sequent calculus, namely its soundness
and completeness. A deductive system is sound if it can only be used to prove true things
(it shouldn’t be too difficult to convince yourself that this is a useful property to have!).
Likewise, a deductive system is complete if any true statement can be proved using the
system. Throughout the semester, we will get into the habit of asking these sorts of
questions about the systems we study, as they have important practical ramifications
for our ultimate goal of making software secure.
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2 A stroll down memory lane: contracts

Thinking back to 15-122 Principles of Imperative Computation, recall that contracts
serve a valuable role in understanding programs. In 15-122, you made good use of
contracts to specify the assumptions that functions are allowed to make of their inputs,
as well as their intended behavior in terms of output values. Moreover, you learned
how to reason about the behavior of imperative code by writing informal proofs that
contracts hold, and were able to rely on dynamic checks to ensure that they weren’t
violated when running your code. In short, you learned that contracts are useful for
establishing the correctness of programs.

You might be surprised to learn that contracts are also tremendously useful for estab-
lishing security as well. The Ironclad Apps [HHL+14] and Ironfleet [HHK+15] projects
out of Microsoft Research leveraged contracts and automated verification tools to build
networked applications and distributed systems with provable information flow, mem-
ory safety, data privacy, and other security properties. However, we’ll refresh ourselves
on contracts using a much smaller example that doesn’t have much to do with security.
This should be more familiar, and will serve to illustrate the main ideas that motivate
our study of propositional logic.

Consider the following C0 code, which multiplies two numbers using only addition,
multiplication by 2, and division by 2.

1 int BinaryMult(int a, int b)

2 // @requires b >= 0;

3 // @ensures \result = a*b

4 {

5 int x=a;

6 int y=b;

7 int z=0;

8 while (y > 0)

9 // @loop_invariant 0 <= y && z + x * y = a * b;

10 {

11 if (y%2 == 1) {

12 z = z + x;

13 }

14 x = 2*x;

15 y = y/2;

16 }

17 return z;

18 }

This algorithm uses contracts, which is a good thing because it may not be totally
obvious that this procedure does what is claimed. Are they all correct? Are they easy
to follow? Is it enough to assume that b >= 0 holds at the beginning of the function to
ensure the postcondition? Does the postcondition follow easily from the loop invariant?

This is all quite exciting. But the purpose of today’s lecture is not actually to get
us back into specifying or checking contracts of programs. Instead we’ll focus on the
conditions in the contract and try to understand exactly what they mean, and how we
can reason about them. Our layman’s reading in the 15-122 course was that the C0
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contracts @requires, @ensures, @loop invariant and @assert just expect ordinary C0
expressions of type bool that are being evaluated and need to come back with value
true to successfully pass.

Well, what exactly does the expression \result mean in the @ensures postcondition?
What if the C0 expression in a contract calls a function that has the side effect of chang-
ing a data structure? Are side effects even allowed during contract checking? What
does a recursive function call mean during a contract? What exactly is the meaning of
the && operator itself? What should its meaning be? Some form of logical and. Does it
perform short-circuit evaluation? When exactly and how are the contracts evaluated?
What if an expression crashes during contract evaluation? How do we know that the
contracts are correct for a C0 program?

These are quite a number of subtle questions for something that we thought we had
already mastered as well as the contracts from Principles of Imperative Computation.

3 Propositional Logic

Maybe we should first take a step back and give the expressions within a contract a
more careful look to see how they can best be understood. We’ll start with propositional
logic, which will allow us to understand the basic logical connectives used in contracts.

3.1 Syntax

The objects that we will study in propositional logic are called formulas, and are com-
posed of the following elements.

Atomic Propositions. The basic building blocks are propositions, which you can view
as variables that take Boolean (i.e., true/false) values. Some might find it helpful
to think of propositions as statements such as “The memory at address 0x00105f0
holds the value 10”, which are either true or false. However, we won’t bother in-
terpreting the meaning of such associations for now, and we’ll just denote atomic
propositions with lowercase letters and treat them as abstract statements that
could be either true or false.

Connectives. Propositional formulas may contain the connectives¬,∧,∨,→,↔, which
are used to construct formulas from propositions and other formulas.

We define the ways in which propositions, connectives, and formulas can be syntac-
tically combined by writing a grammar as shown in Figure 1.

Definition 1 (Syntax of propositional logic). The formulas F,G of propositional logic
are defined by the following grammar (where p is an atomic proposition):

F ::= ⊥ | > | p | ¬F | F ∧G | F ∨G | F → G | F ↔ G

In Definition 1, ⊥ and > stand for the constants true and false, respectively. The way
to read such a grammar is as follows:
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• The Boolean constants ⊥ and > are formulas.

• An atomic proposition (usually denoted p, q, r) is a formula.

• If F is a formula, then its negation ¬F is also a formula.

• If F and G are formulas, then the conjunction F ∧ G, the disjunction F ∨ G, the
implication F → G, and the bisubjunction F ↔ G are also formulas.

Parentheses are also allowed as needed to make precedence explicit. For example, this
is a propositional formula:

(p→ q)↔ (¬p ∨ q) (1)

We’ll use the following precedence on operators, from highest to lowest: ¬,∧,∨,→,↔.
We will also assume that→ and↔ associate to the right, so the following:

t ∧ p→ q → r → s (2)

is equivalent to:
(t ∧ p)→ (q → (r → s)) (3)

Parentheses are cumbersome, so we’ll avoid using them whenever possible.

4 Semantics

Writing down logical formulas that fit to the syntax of propositional logic is one thing,
but not particularly useful unless we also know whether the formulas are actually true
or not. We cannot generally know whether the atomic propositions in a propositional
logical formula are true or false, because they are just called p, q, r, which does not tell
us much about their intention. But we can ask somewhere. Let’s fix a function I , called
the interpretation, that tells us the truth-value for each atomic proposition. So I(p) = >
iff atomic proposition p is interpreted as true in interpretation I . For example, we could
fix the following interpretation when interpreting formula (1):

I = {q} (4)

By this common notation, we mean the interpretation that satisfies I(q) = > and inter-
prets all other atomic propositions (i.e., just p in this case) as ⊥.

Having fixed an interpretation I for the atomic proposition, we can now easily evalu-
ate all propositional formulas to see whether they are true or false in that interpretation
I of atomic propositions, because the logical operators ∧,∨,¬,→,↔ always have ex-
actly the same meaning.

Definition 2 (Semantics of propositional logic). The propositional formula F is true in
interpretation I , written I |= F , as inductively defined by distinguishing the shape of
formula F :

1. I 6|= ⊥, i.e., ⊥ is true in no interpretations
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2. I |= >, i.e., > is true in all interpretations

3. I |= p iff I(p) = > for atomic propositions p

4. I |= F ∧G iff I |= F and I |= G.

5. I |= F ∨G iff I |= F or I |= G.

6. I |= ¬F iff I 6|= F , i.e. it is not the case that I |= F .

7. I |= F → G iff I 6|= F or I |= G.

8. I |= F ↔ G iff both are true or both false, i.e., it is either the case that both I |= F
and I |= G or it is the case that I 6|= F and I 6|= G.

With this definition, it is easy to establish that formula (1) is true in interpretation (4):

I |= (p→ q)↔ (¬p ∨ q)

For example, the evaluation of the right-hand side formula after the implication →
proceeds as follows:

I |= p→ q because I 6|= p because I(p) = ⊥

Was this a coincidence? Is formula (1) only true in this particular interpretation (4) or
what happens with other interpretations of the atomic propositions?

The most exciting formulas are those that are true no matter what the interpretation
of the atomic propositions is. Such a formula is called valid and very helpful, because
it expresses a true property no matter what specific interpretation of the atomic propo-
sitions we had in mind. We will also talk about satisfiable formulas, which are those for
which there is at least one interpretation that makes the formula true.

Definition 3 (Validity & Satisfiability). A formula F is called valid iff it is true in all
interpretations, i.e. I |= F for all interpretations I . Because any interpretation makes
valid formulas true, we also write � F iff formula F is valid. A formula F is called
satisfiable iff there is an interpretation I in which it is true, i.e. I |= F . Otherwise it is
called unsatisfiable.

You may wonder what exactly the relationship between satisfiability and validity is.
Most obviously, if F is valid then it is also satisfiable; likewise, if F is unsatisfiable then
it is certainly not valid. But there is more to this connection. Suppose that F is valid,
so for any interpretation I |= F . By the semantics of negation, I 6|= ¬F , so it must be
the case that ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. Then for
any interpretation I , I 6|= ¬F , and by the semantics of negation I |= F . So F is valid
whenever ¬F is unsatisfiable.

In this sense, satisfiability and validity are duals of eachother, and a statement about
the validity (resp. satisfiability) of a formula is also one about the satisfiability (resp.
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validity) of its negation. To make this explicit, we can summarize by saying F is valid if
and only if ¬F is unsatisfiable.

It is not difficult to imagine how we might decide whether a propositional formula is
valid; we simply try all interpretations of the atomic propositions, using the semantics
to decide whether the formula is true. Let’s tabulate our results for Eq. 1 by writing
down each combination of truth-values for all atomic propositions and evaluating all
subformulas of (1) according to their semantics.

p q p→ q ¬p ¬p ∨ q (1)
> > > ⊥ > >
> ⊥ ⊥ ⊥ ⊥ >
⊥ > > > > >
⊥ ⊥ > > > >

Indeed, the truth-value of the formula (1) is > in all interpretations, thus, (1) is valid:

� (p→ q)↔ (¬p ∨ q)

The only downside is all this busywork to evaluate all interpretations, which is expo-
nential in the number of atomic propositions and incredibly boring on top of that.

5 Proofs for Propositional Logic

Literally evaluating a formula in all possible interpretations is certainly one way of es-
tablishing that a propositional logical formula is valid, but it always requires exponen-
tial effort and is quite uninsightful, because it does not even provide a comprehensible
reason for the validity of the formula. The only way to check that a truth-table is con-
structed correctly for a formula is to check that it enumerates all cases of interpretations
and all its computations of truth-values are according to the semantics and that, indeed,
> is the outcome in all cases. Possible but incredibly dull. Besides, this finite enumer-
ation principle cannot work for the significantly more interesting and expressive logics
that we will be pursuing to understand programs in subsequent lectures.

The semantics considered one operator at a time. Let’s try to make the same thing
happen for proofs as well. What about a proof of a conjunction F ∧G? How could that
work?

A proof of a conjunction F∧G should consist of a proof of the left conjunct F together
with a proof of the right conjunct G, because both proofs together prove the conjunction
F ∧G. So stapling a proof of F together with a proof of G will give us a proof of F ∧G.
That was easy enough.

But what does a proof of an implication F → G consist of? It certainly isn’t a proof
of F together with a proof of G anymore. A proof of G would constitute a proof of
F → G, but such a proof is missing out on an important power. It would have been
allowed to assume F , because the formula F → G only says that F implies G, so that
G is true in case F is. If F isn’t true, then the implication F → G doesn’t say anything
about whether G is true or not. (Check back with Def. 2 if you don’t believe this).
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Consequently, an unconditional proof of G certainly does establish F → G, but is a bit
much to ask for. The proof of F → G should, instead, consist of a proof of G that is
allowed to assume F . This requires the capability to manage assumptions in a proof,
which, retrospectively, should not actually come as a surprise.

For managing assumptions in a structured way, we will follow in the footsteps of
Gerhard Gentzen [Gen35], who introduced sequent calculus for the study of logic. But
it turns out that sequent calculi are also immensely useful not just for understanding
logical reasoning, but also for organizing and conducting proofs without risking to lose
track of assumptions.

5.1 Simple Sequents

The first kind of sequent that we will consider (and subsequently generalize) is of the
form

Γ ` F

with the available assumptions as a list of formulas Γ as antecedent and with the formula
we want to prove from it as F, the succedent. The symbol ` is called sequent turnstile and
separates the available assumptions from what we try to prove from them.

There are some sequents where we are obviously done with a proof. For example
when literally the same formula F is in the antecedent and the succedent, because F
easily follows when assuming F . So the sequent Γ, F ` F has a trivial proof. We will
later capture this thought with a proof rule id, but first consider proofs for the operators
we already started considering.

Coming back to conjunctions, proving a conjunction F ∧ G requires proving F and
proving G. This fact does not change when working from a list of assumptions Γ.

(∧R)
Γ ` F Γ ` G

Γ ` F ∧G

This proof rule ∧R expresses that all it takes to prove the conclusion Γ ` F ∧G below the
rule bar is to prove all the premises Γ ` F and Γ ` G above the rule bar. In the proof of
the left premise Γ ` F , the same assumptions Γ will still be available that were available
in the conclusion Γ ` F ∧G. And likewise for the right premise.

Proving an implication F → G, with which we had difficulties before, now simply
allows us to add the assumption F to the antecedent with the list of all available as-
sumptions and continue a proof of G from this augmented list of assumptions:

(→R)
Γ, F ` G

Γ ` F → G

Reading the rule→R from bottom to top means that a proof of an implication F → G
from a list of assumptions Γ requires us to prove G from the assumptions Γ together
with F .
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Proving a disjunction F ∨ G is more subtle. How do we prove a disjunction? We
could prove a disjunction F ∨G by proving the left disjunct F :

(∨R1)
Γ ` F

Γ ` F ∨G

That works. But then what if the disjunction F ∨G is true because the right disjunct G
is true? Well, we could adopt yet another proof rule for disjunction that shows the right
disjunct instead:

(∨R2)
Γ ` G

Γ ` F ∨G

This would give us a pair of proof rules ∨R1 and ∨R2 to prove disjunctions. But we
will have to choose at the time of proving the disjunction F ∨ G whether we prove it
by proving its left disjunct F with rule ∨R1 or whether we prove it by proving its right
disjunct G with rule ∨R2. That requires a lot of attention when proving disjunctions.
Worse yet: will we always be able to tell which disjunct we will be able to prove?

In many cases, we will be able to predict which disjunct of a disjunction we will
be able to prove if we think ahead very carefully. But that is already not particularly
helpful and convenient. Worse yet, there are cases where, for principle reasons, we
will be unable to predict which disjunct of a disjunction we will prove! Suppose we are
trying to prove the formula p∨¬p, which is certainly valid, because it will evaluate to>
whether or not the atomic proposition p is interpreted to be>. But when trying to prove
the law of excluded middle p ∨ ¬p, neither rule ∨R1 nor rule ∨R2 will succeed because
the whole point of the law of excluded middle is that it will evaluate to > whether p is
> or ⊥ (so ¬p is >), but we cannot generally say ahead of time which side will be >.

Instead, what we are going to do is to keep our options open. We will record in the
sequent the fact that formulas F as well as G were both available as formulas for us
to prove when proving the disjunction F ∨ G by keeping both as a list on the right-
hand side of the sequent turnstile `. Of course, we might have already gathered other
options that we could prove, so the disjunction proof rule is:

(∨R)
Γ ` F,G,∆

Γ ` F ∨G,∆

Proving a disjunction F ∨ G from a list of assumptions Γ with a list of alternatives ∆
works by splitting the disjunction into its two options F and G and continuing with a
proof of the alternatives F,G,∆ from the assumptions Γ.

5.2 Sequent Calculus

To manifest this, let’s properly define what a sequent Γ ` ∆ is and what it means.

Definition 4 (Sequent). A sequent Γ ` ∆ organizes the reasoning into a list Γ of formulas
available as assumptions, called antecedent, and a list ∆ called succedent. The semantics
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of sequent Γ ` ∆ is the same as that of the formula(∧
F∈Γ

F

)
→

( ∨
G∈∆

G

)

In particular, proving a sequent Γ ` ∆ requires proving that the disjunction of all
succedent formulas ∆ is implied by the conjunction of all antecedent formulas Γ. For
proving a sequent Γ ` ∆, we can, thus, assume all formulas in Γ and need to show one
of the formulas in ∆, or at least show their disjunction.

This list ∆ of alternatives to prove is simply preserved in the proof rules we saw so
far:

(∧R)
Γ ` F,∆ Γ ` G,∆

Γ ` F ∧G,∆

(→R)
Γ, F ` G,∆

Γ ` F → G,∆

(∨R)
Γ ` F,G,∆

Γ ` F ∨G,∆

For example in rule ∧R, the same succedent ∆ is still available in both premises,
because a proof of ∆ from the assumptions Γ in either premise would also prove ∆
from the assumptions Γ in the conclusion.

How do we prove a bisubjunction P ↔ Q? Going back to the semanatics, we see that
bisubjunction is really like two implications P → Q, Q→ P joined with a conjunction.
This gives us the rule↔R.

(↔R)
Γ ` F → G,∆ Γ ` G→ F,∆

Γ ` F ↔ G,∆

Finally, we can prove a negation ¬F by assuming the converse F and going for a con-
tradiction. In fact, since we may have already gathered a number of other alternatives
∆ to prove, all we need to do to prove ¬F from a list of assumptions Γ with a list of
alternatives ∆ is to prove the remaining alternatives ∆ from assuming Γ as well as the
opposite F :

(¬R)
Γ, F ` ∆

Γ ` ¬F,∆
Does this list of rules handle all operators? There’s one rule per operator, which is

a good thing. The catch is that there’s really only one rule per operator so far. If the
operators occur on the right, so in the succedent, then the respective proof rules tell us
what to do. But the implication proof rule→R is good about pushing assumptions into
the antecedent. What if it pushes a conjunction F ∧ G into the antecedent? Is there a
proof rule to handle what happens then?

Not yet. But there should be a rule for handling the case where there’s a conjunction
F∧G among the list of assumptions in the antecedent. In fact, for every logical operator,
there should be a right proof rule handling the case where it is the top-level operator

15-316 LECTURE NOTES MATT FREDRIKSON



L2.10 Propositional Logic and Proofs

on the right in the succedent as well as a left proof rule handling when it appears on
the left in the antecedent.

5.3 Left Rules

When we find a conjunction F ∧ G among the list of assumptions in the antecedent,
then we can safely split it into two separate assumptions F as well as G:

(∧L)
Γ, F,G ` ∆

Γ, F ∧G ` ∆

Proving a sequent that has a conjunction F∧G among its assumptions in the antecedent
is the same as proving it with two separate assumptions F as well as G instead.

What happens when we have a disjunction F ∨ G among our assumptions in the
antecedent? In that case we have no way of knowing whether F or whether G is true.
All we know is that either of them is. But we still succeed with a proof if we manage
to show the sequent both when assuming F as well as when, instead, assuming G,
because while either are possible, the assumption F ∨G implies that one of those cases
has to apply.

(∨L)
Γ, F ` ∆ Γ, G ` ∆

Γ, F ∨G ` ∆

When an implication F → G is among the assumptions in the antecedent, then we
can make use of that assumption by showing its respective assumption F and can then
assume G instead. If we can assume F → G and show F then we can assume G:

(→L)
Γ ` F,∆ Γ, G ` ∆

Γ, F → G ` ∆

Wait a moment. The left premise does not actually show F from the assumptions Γ,
because it only shows the succedent F,∆ which is interpreted disjunctively. So it is
possible that the left premise does not show F but merely ∆. But in that case, the con-
clusion is justified as well, because it also has the antecedent ∆ as the list of alternatives
to show.

We leave the left rule for the operator↔ as an exercise, so the only remaining case is
to handle a negation ¬F among the assumptions in the antecedent. If we assume ¬F
then it is also sufficient if we can show the opposite F (recall the semantics of sequents):

(¬L)
Γ ` F,∆

Γ,¬F ` ∆

To understand, we can first pretend there would be no succedent ∆. What happens if
there is no succedent? Then the empty disjunction that it means is equivalent to the
formula⊥ that is never true in any interpretation. In that special case, rule ¬L says that
for proving a contradiction ⊥ from assumptions ∆ and ¬F , it is sufficient to prove the
opposite F from the remaining assumptions Γ.
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5.4 Closing and Forking

The above proof rules excel at splitting operators off of propositional logical formulas.
But they never actually prove anything on their own except simplifying all formulas
until only atomic propositions are left. What is missing is the observation that a sequent
can be proved easily when the same formula F is in the antecedent and succedent with
the identity proof rule called id:

(id)
Γ, F ` F,∆

Whenever we find the same formula F in the antecedent and succedent, we can use
rule id to prove that sequent without any further questions (no premise, i.e. no more
remaining subgoals).

Another insightful proof rule is the cut proof rule, which enables us to first prove an
arbitrary formula C on the left premise and then assume C on the right premise.

(cut)
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆

Think of C as a lemma that is proved in the left premise and then assumed to hold in
the right premise. The twist is again that the left premise does not necessarily prove
C but might also settle for proving another alternative in the remaining succedent ∆,
but that also establishes the succedent ∆ of the conclusion. The primary purpose of
the cut rule is for ingenious theoretical studies of reasoning [Gen35] as well as to find
clever shortcuts in practical proofs by first proving a lemma C that subsequently helps
multiple times in the remaining proof. It plays a crucial role in constructive logics, too.

All these sequent calculus proof rules are sound, that is, if all their premises are valid,
then their conclusion is valid. Especially if there are no premises any more because we
were able to use the identity proof rule id on all premises, then the conclusion is valid,
which is what we were hoping to achieve with a proof.

5.5 Conducting Sequent Calculus Proofs

As an example, let’s prove formula (1). Sequent calculus proofs are conducted in a bit
of a funny way by starting with the conjecture at the bottom

` (p→ q)↔ (¬p ∨ q)

and then working our way upwards by applying proof rules to the remaining sequents.
The reason why we work like that is that in (sound!) sequent calculus proof rules valid-
ity of all premises implies validity of the conclusion. So if we start with our conjecture
at the bottom and work our way upwards, then if we are able to prove all premises then
the conclusion at the bottom will be valid, too. We apply sequent calculus rules from
the bottom to the top but, when a proof is done, their soundness makes validity inherit
from the top to the bottom.
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(∧R)
Γ ` F,∆ Γ ` G,∆

Γ ` F ∧G,∆

(∨R)
Γ ` F,G,∆

Γ ` F ∨G,∆

(→R)
Γ, F ` G,∆

Γ ` F → G,∆

(¬R)
Γ, F ` ∆

Γ ` ¬F,∆

(id)
Γ, F ` F,∆

(∧L)
Γ, F,G ` ∆

Γ, F ∧G ` ∆

(∨L)
Γ, F ` ∆ Γ, G ` ∆

Γ, F ∨G ` ∆

(→L)
Γ ` F,∆ Γ, G ` ∆

Γ, F → G ` ∆

(¬L)
Γ ` F,∆

Γ,¬F ` ∆

(cut)
Γ ` C,∆ Γ, C ` ∆

Γ ` ∆

Figure 1: Sequent calculus proof rules for propositional logic

Enough said. Let’s prove formula (1) in sequent calculus:

∗
idp ` p, q

∗
idq, p ` q

→L p→ q, p ` q
¬R p→ q ` ¬p, q
∨R p→ q ` ¬p ∨ q
→R ` (p→ q)→ ¬p ∨ q

∗
id p ` p, q
¬L¬p, p ` q

∗
idq, p ` q

∨L ¬p ∨ q, p ` q
→L ¬p ∨ q ` p→ q
→L ` ¬p ∨ q → p→ q

↔R ` (p→ q)↔ (¬p ∨ q)

6 Soundness

Having conducted a sequent calculus proof, the most pressing question is what a proof
proves. Of course, as we already alluded to before, a proof in a sound deductive system
implies the validity of the conclusion.

Definition 5 (Soundness of a proof rule). A sequent calculus proof rule

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆

is sound iff the validity of all premises implies the validity of the conclusion:

if � (Γ1 ` ∆1) and . . . and � (Γn ` ∆n) then � (Γ ` ∆)

Recall from Def. 4 that the meaning of the sequent Γ ` ∆ is the same as that of the
formula

(∧
F∈Γ F

)
→
(∨

G∈∆ G
)
.

Lemma 6 (Soundness of propositional logic proof rules). All propositional logic proof rules
(summarized again in Fig. 1), are sound.
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Proof. It is crucial to prove soundness for all proof rules. We will, nevertheless, only
prove it for one rule and leave the others as exercises. But we will prove that rule with
exceeding care.

∧R That proof rule ∧R is sound can be shown as follows. Assume that both of its
premises Γ ` F,∆ and Γ ` G,∆ are valid, i.e. both (

∧
F∈Γ F ) → F ∨ (

∨
G∈∆ G)

and (
∧

F∈Γ F ) → G ∨ (
∨

G∈∆ G) are true in all interpretations. We need to show
that the conclusion Γ ` F ∧G,∆ is then also valid, i.e. � (Γ ` F,∆), which means
that (

∧
F∈Γ F ) → (F ∧G) ∨ (

∨
G∈∆ G) is true in all interpretations. Consider any

interpretation I and show that I |= (
∧

F∈Γ F )→ (F ∧G) ∨ (
∨

G∈∆ G). If any of
the antecedent formulas F ∈ Γ is false in I (I 6|= F ) or any of the remaining succe-
dent formulas G ∈ ∆ is true (I |= G), then I |= (

∧
F∈Γ F )→ (F ∧G) ∨ (

∨
G∈∆ G).

Otherwise, all antecedent formulas in Γ are true I |=
∧

F∈Γ F and all ∆ formulas
are false I 6|=

∨
G∈Γ G.

By premise, I |= (
∧

F∈Γ F )→ F ∨ (
∨

G∈∆ G) and I |= (
∧

F∈Γ F )→ G ∨ (
∨

G∈∆ G).
Since antecedents in Γ are true and succedents in ∆ false in I , this implies I |= F
and I |= G. By Def. 2, these imply I |= F ∧G, which implies that the conclusion
is true in I , i.e. I |= (

∧
F∈Γ F )→ (F ∧G) ∨ (

∨
G∈∆ G).

In fact, the prelude of the soundness argument is common to all proof rules so that
one usually just assumes right away without loss of generality that the common an-
tecedent Γ is true while the common succedent ∆ false in the current interpretation
I .

Now that all proof rules of propositional logic are sound it is easy to see that the
whole proof calculus is sound, because a proof is entirely built by applying sound proof
rules so validity of all premises (of which there are none in a completed proof) implies
validity of the conclusion. Because this is so important and we want to practice the
important proof principle of induction, we will show this explicitly.

Theorem 7 (Soundness of propositional logic). The sequent calculus of propositional logic
is sound, i.e. it only proves valid formulas. That is, if ` F has a proof in the propositional
sequent calculus, then F is valid, i.e. � F .

Proof. What we need to show is that if ` F is the conclusion of a completed sequent
calculus proof, then F is valid, i.e. � F . A proof of the sequent ` F will consist of proofs
of sequents of the more general shape Γ ` ∆. So we instead prove the more general
statement that a proof of Γ ` ∆ implies � (Γ ` ∆). We will prove this by induction on
the structure of the proof. That is, we will prove it for the smallest possible proofs. And
then, assuming that the proofs of the smaller pieces of a proof have valid conclusions,
we will show that one more proof step preserves validity.

1. The only proofs with just 1 proof step are of the form

id
∗

Γ, F ` F,∆

Its conclusion is valid, because assumption F in the antecedent trivially implies
F in the succedent.
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2. Consider any proof ending with a proof step of this form:

Γ1 ` ∆1 . . . Γn ` ∆n

Γ ` ∆
(5)

By induction hypothesis, we can assume that the (smaller!) proofs of the premises
Γ1 ` ∆1 and . . . Γn ` ∆n already imply the validity of their respective conclusions
so � (Γ1 ` ∆1) and . . .� (Γn ` ∆n).

The proof rule used in the proof step (5) must have been one of the proof rules of
the sequent calculus of propositional logic. All these sequent calculus proof rules
of propositional logic are sound by Lemma 6. Consequently, � (Γ ` ∆), so the
conclusion of the proof (5) is valid.

Soundness is one thing, and most crucial for any correct reasoning. But since proposi-
tional logic is so simple, it enjoys other pleasant properties. It is also the case that every
valid propositional logic formula will be provable from the sequent calculus proof rules
in Fig. 1, which is called completeness.

Theorem 8 (Completeness of propositional logic). The sequent calculus of propositional
logic is complete, i.e. it proves all valid formulas. That is, if F is valid, so � F then ` F has a
proof in the propositional sequent calculus.

In fact, because propositional logic is so simple, it is perfectly decidable whether a
propositional logical formula is valid. You already knew this, however, because we
discussed an effective procedure for deciding propositional validity—truth tables.

Theorem 9 (Decidability of propositional logic). Propositional logic is decidable, i.e. there
is an algorithm that accepts any propositional logical formula as input and correctly outputs
“valid” or “not valid” in finite time.
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