
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Control Flow Safety

Matt Fredrikson

Carnegie Mellon University
Lecture 8

1 Introduction & Recap

In the last lecture we talked about enforcing a more granular type of memory safety
policy to ensure that parts of our program don’t read or write portions they aren’t sup-
posed to. This was motivated by our hypothetical career as an app developer who
wants to monetize with advertising, and is thus compelled by Vladimir’s discount ad
shop to run untrusted rendering code within our program:

if(display ads)α else continue without ads

We discussed sandboxing policies where a region of memory is designated for the un-
trusted α to “play” in, such as the upper portion of memory at addresses 8-15 in the
diagram below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Memory

As long as we can enforce this policy, and we are careful about writing our program to
save and restore variable state, then we can ensure that whatever the sandbox does will
not affect the rest of our program’s execution.

We discussed an approach called software fault isolation [3, 5] (SFI) for properly iso-
lating the malicious or buggy effects of α from the rest of our program. SFI works by
inlining enforcement directly into α, changing its behavior so that it can’t violate the
sandbox policy and if it attempts to do so then it still won’t have any effect on the rest
of our execution. SFI is a very practical technique, and has been used effectively in real

https://15316-cmu.github.io/index.html

L8.2 Control Flow Safety

applications to isolate untrusted code execution from browsers, operating systems, and
other critical applications. In the next lab, you will implement a prototype SFI policy
for your server.

Today we will look at a related technique called control flow integrity [1], which en-
sures that the attacker cannot influence the control flow of a program to diverge from
a pre-defined control flow policy. But in order for this defense to have any purpose,
we need to introduce indirect control flow commands into our language, bringing it
closer yet to the features that real platforms in need of rigorous security defenses have
in practice. We will then generalize the safety enforcement techniques discussed so far,
introducing a flexible and practical method for enforcing safety policies provided as
security automata [2].

2 Indirect control flow

So far the programs that we have considered have a particularly nice property. Namely,
once the programmer decides which commands are in the program and how they are
sequenced together with compositions, conditionals, and while loops, then all of the
possible sequences of commands that the program will ever execute are fixed once and
for all. There is no way for a user to provide data that could cause some of the com-
mands to be skipped over or added, and as long as the program is executed faithfully
to the semantics, the control flow will be as the programmer envisioned when the pro-
gram was written.

Programs executed on “real” machines do not enjoy this property, thanks to indirect
transfers of control flow. An indirect control flow transfer is commonly implemented
using a function pointer in high-level languages, or a jmp instruction with a pointer
operand. We’ll add this functionality to our language by considering a program com-
mand of the form:

if(Q) jump e (1)

The command in (1) first tests whether a formula Q is true in the current state. If it
is, then control transfers to the instruction indexed by the term e. Otherwise, control
proceeds to the next instruction.

But this doesn’t make much since yet, because we haven’t discussed indexing of in-
structions. Programs in the simple imperative language are themselves just commands,
which can be built from other commands by connecting them with composition, con-
ditional, and looping constructs. We will now change the language so that rather than
having structured high-level commands like if(Q)α elseβ and while(Q)α, we will
assume that programs are sequences of unstructured “atomic” commands. So the com-
mands are defined by the syntax:

α ::= x := e | Mem(e) := ẽ | assert(Q) | if(Q) jump e

Then a program Π is a finite sequence of commands,

Π = (α0, α1, . . . , αn) (2)

15-316 LECTURE NOTES MATT FREDRIKSON

Control Flow Safety L8.3

We will write Π(i), where 0 ≤ i ≤ n, to refer to the command αi in program Π. If i is
negative, or n < i, then Π(i) is undefined.

Think of this language as a simplified version of assembly language. Memory update
commands Mem(e) := ẽ correspond to store instructions (i.e., mov into a memory cell),
memory dereference terms Mem(e) correspond to memory fetch instructions (i.e., mov
from a memory cell to a register), and if(Q) jump e to conditional jmp instructions. We
don’t have an explicit stack or notion of procedure to worry about, but if we did then
halt commands would correspond to ret instructions.

Semantics. Recall that program states ω are composed of a variable map ωV and
memory ωM . Now that programs Π are composed of indexed commands, and can
transfer control to any command in Π, states will also need to track a program counter
ωi that determines which command executes next. The program counter will range
from i ∈ 0 to n, denoting that the command Πi executes next.

Definition 1 (Operational semantics of programs). The small-step transition relation
 Π of program Π composed of commands α0, . . . , αn in state ω = (ωi, ωV , ωM) is given
by the following cases:

(ωi, ωV , ωM) Π

(ωi + 1, ωV {x 7→ ωJeK}, ωM) if Πi = x := e and ωJeK is defined
(ωi + 1, ωV , ωM{ωJeK 7→ ωJẽK}) if Πi = Mem(e) := ẽ and

ωJẽK is defined and 0 ≤ e < U
(ωi + 1, ωV , ωM) if Πi = assert(Q) and ω |= Q
(ωJeK, ωV , ωM) if Πi = if(Q) jump e and

0 ≤ ωJeK ≤ n and ω |= Q
(ωi + 1, ωV , ωM) if Πi = if(Q) jump e and

0 ≤ ωJeK ≤ n and ω |= ¬Q
Λ if otherwise and 0 ≤ ωi ≤ n

Having defined the small-step transition semantics, we can define the trace semantics
as all sequences of states ω1, ω2, . . . that either terminate, diverge (i.e. terminate in no
state and run forever), or abort by terminating in ω = Λ.

Definition 2 (Trace semantics). Given a program Π composed of commands α0, . . . , αn,
the trace semantics JΠK is the set of traces obtainable by repeated application of the
small-step relation Π.

JΠK = {(ω0, ω1, . . .) : ωi Π ωi+1 for all indices 0 ≤ i of the trace}

The definitions of terminating, diverging, and aborting traces are the same as they were
in previous definitions of the trace semantics.

15-316 LECTURE NOTES MATT FREDRIKSON

L8.4 Control Flow Safety

Example. Consider the following program to illustrate how the operational and trace
semantics work.

0: assert(0 ≤ x)
1: Mem(0) := Mem(0) + 1
2: x := x− 1
3: if(0 ≤ x) jump 1

Suppose that we begin in the following state:

ωi = 0
ωV (x) = 2 and all other variables map to 0
ωM (i) = 0 for all 0 ≤ i < U

Then consulting the operational semantics, we see that Π0 = assert(0 ≤ x) and ω |=
0 ≤ x, so the next state is (ωi + 1, ωV , ωM).

(0, ωV , ωM) Π

(1, ωV , ωM)

Now Π1 = Mem(0) := Mem(0) + 1 and Mem(0) = 0. So the next state is (2, ωV , ωM{0 7→ 1}).

(0, ωV , ωM) Π

(1, ωV , ωM) Π

(2, ωV , ωM{0 7→ 1})

Now Π2 = x := x− 1 and the semantics tell us to update ωV at x.

(0, ωV , ωM) Π

(1, ωV , ωM) Π

(2, ωV , ωM{0 7→ 1}) Π

(3, ωV {x 7→ 0}, ωM{0 7→ 1})

We now get to the jump because Π3 = if(0 ≤ x) jump 1. The number of instructions
n = 3, so the next state has program counter 1. We continue in this way, until we reach
the conditional jump again. At this point ωV (x) = −1, and so the program counter
increments to 4.

(0, ωV , ωM) Π

(1, ωV , ωM) Π

(2, ωV , ωM{0 7→ 1}) Π

(3, ωV {x 7→ 0}, ωM{0 7→ 1}) Π

(1, ωV {x 7→ 0}, ωM{0 7→ 1}) Π

(2, ωV {x 7→ 0}, ωM{0 7→ 1}{0 7→ 2}) Π

(3, ωV {x 7→ 0}{x 7→ −1}, ωM{0 7→ 1}{0 7→ 2}) Π

(4, ωV {x 7→ 0}{x 7→ −1}, ωM{0 7→ 1}{0 7→ 2})

15-316 LECTURE NOTES MATT FREDRIKSON

Control Flow Safety L8.5

Now the program counter is outside the instruction bounds in Π. The operational se-
mantics does not define a next state, so the computation effectively terminates.

3 Control Flow Integrity

Let’s return to our problem with untrusted advertising code. Now that the language
α is written in can make indirect jumps, what could go wrong? Assuming that we are
using SFI to enforce a sandboxing policy, there is still no way for α to read or write
memory outside the sandbox. Is this true? Consider the following situation, where we
can assume that SFI has been applied to the untrusted α starting at command 20.

...
10: z := Mem(x)
11: if(i ≥ 0) jump y

...

α

20: i := 0
21: x := attacker’s desired address
22: y := 24
23: if(0 = 0) jump 10
24: copy memory contents from z

...

Here, our original program (not the untrusted α) dereferences memory and makes use
of indirect control flow transfer. More specifically,

1. At command 10, it dereferences memory on the variable x and stores the result
into z. Because this command is not in the untrusted portion α, it was not rewrit-
ten with SFI and can readily access memory outside the sandbox.

2. At command 11, the program tests i ≥ 0, and if the test holds then jumps to
whatever command is currently in y.

3. The untrusted code sets up the program state: (i) the indirect jump at 11 will occur
by setting i := 0 on line 20; (ii) the indirect jump at line 11 will return control to α
by setting y := 24; (iii) setting x := . . . at 21 so that the address read at line 10 will
be whatever the attacker wants, presumably outside the sandbox bounds.

4. The command at 23 then executes an indirect jump on a trivial test, targeting 10
so that the attacker’s choice of memory is read and control returns to α after the
indirect jump at 11.

To summarize, the attacker identifies a sequence of commands in the trusted portion of
the program, and sets things up in a way so that unauthorized memory is copied into a
variable that the attacker can later access once control is returned to the untrusted code.

15-316 LECTURE NOTES MATT FREDRIKSON

L8.6 Control Flow Safety

This should remind you of a return-oriented programming (ROP) attacks [4] that you
learned about in 15-213. If we assume that the attacker knows the text of our program,
then it is possible for them to identify “gadgets” in code that we wrote to do their bidding.
But this crucially relies on the ability to change control flow using indirection so that
commands are executed in the order needed by the attacker to carry out their goals.

3.1 Coarse-grained safety

How can we prevent this? One idea is to use the same approach as we did for SFI.
In that case, we designed a sandbox between memory address sl and sh, and then
rewrote the indices in all memory operations to ensure that accesses stayed within those
bounds. Perhaps we can do a very similar thing here, by assigning a “code sandbox”
between commands at pcl and pch. Then we can rewrite indirect jump commands to
ensure that their target always lies within these bounds.

Rewrite all if(Q) jump e commands as if(Q) jump (e & pch) | pcl (3)

This is a form of control flow integrity (CFI) [1], a technique for enforcing a broad class of
safety properties that place limits on the allowed control flow paths in a program. As
long as we choose pcl and pch to satisfy similar conditions as those used in Theorem ??,
i.e.

0 ≤ pcl ≤ (e & pch) | pcl ≤ pch ≤ n (4)

then we can ensure that the untrusted code will never jump out of its sandbox. This
seems to address our concerns with the advertising scenario, when everything un-
trusted resides in a well-specified region of code known in advance.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Principles,
implementations, and applications. ACM Transactions on Information and Systems
Security, 13(1):4:1–4:40, Nov. 2009.

[2] F. B. Schneider. Enforceable security policies. ACM Transactions on Information Sys-
tems Secur., 3(1):30–50, Feb. 2000.

[3] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee, and B. Chen.
Adapting software fault isolation to contemporary cpu architectures. In Proceedings
of the 19th USENIX Conference on Security, 2010.

[4] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of CCS 2007, Oct. 2007.

[5] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code.
In IEEE Symposium on Security and Privacy, 2009.

15-316 LECTURE NOTES MATT FREDRIKSON

	Introduction & Recap
	Indirect control flow
	Control Flow Integrity
	Coarse-grained safety

