
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Security Automata & Instrumentation

Matt Fredrikson

Carnegie Mellon University
Lecture 9

1 Introduction & Recap

We began last lecture by adding indirect control flow to our language, in the form of the
instruction if(Q) jump e. We then returned to our sandboxing approach for untrusted
program α, and considered what could happen now that indirect jumps are in the lan-
guage. Assuming that we are using SFI to enforce a sandboxing policy, there is still
no way for α to read or write memory outside the sandbox. Is this true? Consider the
following situation, where we can assume that SFI has been applied to the untrusted α
starting at command 20.

...
10: z := Mem(x)
11: if(i ≥ 0) jump y

...

α

20: i := 0
21: x := attacker’s desired address
22: y := 24
23: if(0 = 0) jump 10
24: copy memory contents from z

...

Here, our original program (not the untrusted α) dereferences memory and makes use
of indirect control flow transfer. The attacker identifies a sequence of commands in the
trusted portion of the program, and sets things up in a way so that unauthorized mem-
ory is copied into a variable that the attacker can later access once control is returned
to the untrusted code. This should remind you of a return-oriented programming (ROP)

https://15316-cmu.github.io/index.html

L9.2 Security Automata & Instrumentation

attacks [5] that you learned about in 15-213. If we assume that the attacker knows the
text of our program, then it is possible for them to identify “gadgets” in code that we
wrote to do their bidding. But this crucially relies on the ability to change control flow
using indirection so that commands are executed in the order needed by the attacker to
carry out their goals.

We discussed addressing this with a very similar approach to what we did for SFI.
We built a “code sandbox” between commands at pcl and pch. Then we can rewrite
indirect jump commands to ensure that their target always lies within these bounds.

Rewrite all if(Q) jump e commands as if(Q) jump (e & pch) | pcl (1)

This is a form of control flow integrity (CFI) [1], a technique for enforcing a broad class of
safety properties that place limits on the allowed control flow paths in a program. But
this sort of policy doesn’t give us much flexibility in terms of what kind of control flow
we might want to restrict the untrusted code to, because any sequence within the code
sandbox is considered valid.

Today we’ll start by looking at a more granular type of control flow policy that takes
into account a control flow graph, and can be used to ensure that the target program
executes only sequences of instructions corresponding to paths in the graph.

2 Finer-grained control-flow safety

But what if this isn’t the case? Suppose that we want to enforce other invariants on
untrusted code, such as that they do not modify a protected variable under certain
conditions. So for example if x is negative, then we want to jump over any assignment
to x. We make the following replacements, among others:

i: x := e becomes
i: if(x < 0) jump i+ 2

i+1: x := e

Now if we use the coarse-grained CFI policy from before, can we actually enforce the
policy using this approach? It would seem not, at least as long as the attacker knows
that this is how we will attempt to do so. The problem arises because of the fact that
according to the coarse-grained CFI policy, any address in the untrusted code is an
allowed target of a jump. So it is perfectly acceptable (according to the coarse-grained
policy) for the attacker to jump directly past the inlined check.

To see this more concretely, consider the following proof-of-concept attack code. Sup-
pose that the attacker wants to set x to 0 regardless of what its value is before the
untrusted code executes. This obviously violates the policy, and to accomplish it the
attacker will provide a program that takes the inline enforcement code into account. So
after providing the code on the left,

i-1: if(0 = 0) jump i+ 1
i: x := 0

becomes
i-1: if(0 = 0) jump (i+ 1 & sh) | sl
i: if(x < 0) jump i+ 2

i+1: x := 0

15-316 LECTURE NOTES MATT FREDRIKSON

Security Automata & Instrumentation L9.3

In short, the attacker sets up the program to jump directly over the enforcement code.

Enforcing the control flow graph. To address this, we can rely on the control flow
graph (CFG) of the untrusted code. Recall from lecture 5 that a program’s CFG is a
graph that encodes all of the possible valid transitions between commands in the pro-
gram. In this case, we will obtain a control flow graph for the original untrusted pro-
gram1, and ensure that the program instrumented with inline safety checks follows the
same CFG modulo any checks.

So in this case, the original control flow graph is given on the left of the diagram
below. Obviously it is not the case that 0 6= 0, so the edge from i-1 to i is never
taken. After the invariant instrumentation is inserted, the correct translation of the
control flow, preserving the relative edges from the original CFG, is shown on the right.
The instrumentation replaced the instruction originally at i with an inline check, and
shifted all of the subsequent instructions up by one address. So this moves i to i+1,
and i+1 to i+2. To make this clear in the diagram, the nodes and edges corresponding
to instrumentation are marked in blue.

i-1

i

i+1

0 6= 0

0 = 0

i-1

i

i+1

i+2

0 6= 0

x ≥ 00 = 0

x < 0

Now to correctly enforce the safety policy that the CFG on the right is respected by the
code, the original jumps are rewritten accordingly.

i-1: if(0 = 0) jump i+ 2
i: if(x < 0) jump i+ 2

i+1: x := 0

By enforcing the original control flow of the program, after taking any added instru-
mentation into account with dealing with instruction addresses, we prevented the at-
tacker from bypassing our inlined safety policy enforcement. But notice that it didn’t

1Obtaining the CFG for an arbitrary program with indirect jumps is a difficult problem indeed. It may
not always be possible to do so, and we will come back to this in later lectures. For now, we will just
assume that we have obtained the correct CFG for α by some unknown means.

15-316 LECTURE NOTES MATT FREDRIKSON

L9.4 Security Automata & Instrumentation

really matter what control flow graph we started out with. It could have been arbi-
trary, perhaps completely different from the actual CFG of the original program, and
we could still enforce it by inserting and replacing conditional jumps.

3 Security automata

The point mentioned at the end of the previous section raises some interesting possi-
bilities. What if we want to enforce a more general safety property that takes aspects of
control flow and program state into account? For example, suppose that our language
from the previous two sections has the ability to make three types of system calls, send
and recv from the network and read from a local file. Then we quite naturally might
want to enforce a safety policy on untrusted code which says that send cannot be called
after read.

We can encode such a policy using a security automaton [4]. Depicted below is a se-
curity automaton for the safety policy “no send after read”. The states are abstract in
the sense that they do not reflect anything about the state of the program or what it
is currently doing. Rather, they represent the state at which the policy is currently in.
The transitions reflect facts about program state that must be true in order for the au-
tomaton to transition. In this case, pc denotes the current program counter, and *pc

its contents. So for example *pc 6= read corresponds to states in which the current
instruction pointed to by the program counter is not read.

*pc 6= read

*pc = read

*pc 6= send

Notice that the only arrow going out of the rightmost state is a self-loop labeled *pc 6=
send. There are no accepting states in a security automaton, and the way to interpret
them is that as long as the automaton can transition from some arrow in its current
state, then the policy has not been violated. So in this case, if the current policy state
were the rightmost one, and the program entered into a state where *pc = send, then
there would be no arrow to transition from and the policy would become violated.

Another way to think about it is that there is a “hidden” error state which corre-
sponds to the policy being violated. Every node has a transition to the error state on
the condition that is the negation of all other outgoing transitions from that state, as
shown in the diagram below.

15-316 LECTURE NOTES MATT FREDRIKSON

Security Automata & Instrumentation L9.5

...Λ

P1

P2

Pn−1

Pn

¬(P1 ∨ · · · ∨ Pn)

These definitions are equivalent, and we will continue using the convention that does
not explicitly list the error state as this will reduce clutter in our diagrams.

Definition 1 (Security automaton[4]). A security automaton is a nondeterministic state
machine that consists of the following components:

• a countable set O of automaton states,

• a countable set O0 ⊆ O of initial states,

• a countable set Σ of transition symbols,

• a transition relation δ ⊆ O × ℘(Σ) × O between automaton states and sets of
transition symbols.

We will assume that sets of automaton states are represented by formulas P,Q, . . . that
can be evaluated on transition symbols to determine whether the symbol is in the set.
Given a sequence of transition symbols σ = σ0, σ2, . . ., we say that the autoamton ac-
cepts σ if and only if there is a corresponding sequence of states o = o0, o1, . . . such that
for each pair σi, σi+1 in σ,

• there is a corresponding pair oi, oi+1 of states in o,

• and there exists (oi, P, oi+1) ∈ δ where P (σi) is true.

In other words, a trace is only accepted if there is a corresponding run of the automaton
that always follows the transition function.

Definition 1 formally defines security automata in terms of a set of states O and tran-
sition symbols S. We will generally assume that S is the set of all program states, so that
we can describe program traces as being accepted or not by a security automaton. This
also implies that sets of states in the transition relation are defined in terms of formulas
on program states, which we have already studied extensively.

15-316 LECTURE NOTES MATT FREDRIKSON

L9.6 Security Automata & Instrumentation

3.1 Enforcing security automata policies

The primary means of enforcing policies defined using security automata is with a ref-
erence monitor (RM). The RM is a mechanism that examines the program as it executes,
using information about the current and past states to decide whether the policy has
been violated. This is done according to Definition 2, and was sketched out at the be-
ginning of this section.

Definition 2 (Security automaton enforcement). Let Oc be the current set of states that
the security automaton is in. Then for each step that the program is about to take
resulting in new program state ω, the reference monitor does one of two things.

1. For each state o ∈ Oc that the automaton can transition from, the states δ(o, P, o′)
for all transition edges where P (ω) is true are added to the new automaton states.

2. If the automaton cannot transition from any of its current states, then the program
is not allowed to enter state ω and the reference monitor takes remedial action.

As long as the policy is not violated, then the RM allows the program to continue
executing as it otherwise would. If the policy is violated, then the RM intervenes on the
program execution to take some remedial action. This could mean simply aborting the
execution, or something less drastic that prevents harm in other ways.

Necessary assumptions. As pointed out by Schneider in his seminal work on secu-
rity automata [4], there are several assumptions that one must make in order to enforce
these policies effectively with a reference monitor. First, the reference monitor needs to
simulate the execution of the automaton as the program runs, so it must keep track of
which state the policy is in on the actual hardware running the program. This means
that the automaton cannot require an unbounded amount of memory, so automata that
have an infinite number of states are not in general enforceable.

Second, the RM must be able to prevent the program from entering a state that would
result in a policy violation. This is called target control, and is a more subtle issue that it
may at first seem. Take for example the policy of “real-time” availability, which states
that a principal should not be denied a resource for more than n real-time seconds.
How could a reference monitor enforce this policy? It might try to predict the amount
of time that it takes to remediate a trace that is about to violate the policy, and take
action earlier than necessary to prevent the violation. But how does it know that the
policy would have actually been violated in this case? Unless the reference monitor can
literally stop time, this is not an enforceable policy.

Third, the program under enforcement must not be able to intervene directly on the
state of the reference monitor. This is called enforcement mechanism integrity, and is cru-
cial for ensuring that the policy defined by the automaton is the one that is actually
enforced on the target program. We dealt with an instance of this issue earlier in the
lecture, when we used control flow integrity to make sure that inlined safety checks

15-316 LECTURE NOTES MATT FREDRIKSON

Security Automata & Instrumentation L9.7

weren’t bypassed by indirect jumps. But now that the policy itself has state, the enforce-
ment mechansim must also guarantee that the target program does not make changes
to that state or influence it in any way that doesn’t follow the automaton transitions.

Inline SA enforcement. One approach to implementing security automata enforce-
ment uses inlined checks to update and maintain state set aside to simulate the au-
tomaton. If we assume that formulas on SA transitions are formulas over program
states, and there are N security automata states, then we can set aside a region of N
memory cells at addresses asa through asa + N to hold the current state of the automa-
ton. If Mem(asa + i) is non-zero, then we assume that the automaton has entered into
state i, and otherwise not.

Next we need to implement the transition function, updating the contents of Mem(asa)−
Mem(asa +N) to simulate the automaton. Suppose that the automaton has an edge from
states i to j labeled with formula P . Then for each instruction in the program we com-
pute the verification condition of (2).

[α]¬P (2)

If (2) is valid before executing α, then it means that all traces after executing α will
satisfy ¬P . On the other hand, if it is not valid, then at least one trace of α may satisfy
P . This means that we need to insert a check whenever Eq 2 is not valid.

What check do we insert? At runtime, we will be in a particular state ω. We want
to know if after executing α, P will be true, and if it is, then update the state of the
automaton. We can accomplish this by simply checking that ω |= [α]P . Of course, we
will want to use axioms to remove the box modality so that the check is actually in
terms of arithmetic, and can be easily evaluated.

So we insert instrumentation immediately before α that checks Mem(asa+i) 6= 0∧[α]P ,
and if it is true then sets Mem(asa+j) to a non-zero value. Then for each state i in the SA,
we compute similar checks for transition to the “error state”. If i has outgoing edges
labeled P1, . . . , Pn, we insert a check for:

Mem(asa + i) 6= 0 ∧ [α]¬(P1 ∨ · · · ∨ Pn) (3)

If this check passes, it means that the automaton cannot transition from state i. If this
holds for every state in the automaton, then the instrumentation aborts execution.

The instrumentation described so far only addresses updates to the SA state. We
must also take steps to ensure the integrity of the inlined mechanism, and there are two
sources of vulnerability.

• The contents of Mem(asa) − Mem(asa + N) must not be modified by any part of the
program except the inserted instrumentation. Applying software fault isolation
to the untrusted instructions can ensure that this aspect of integrity holds.

• The inserted instrumentation could be subverted by indirect control flow. Enforc-
ing CFI on the untrusted code using the original control flow graph ensures that
this will not happen.

15-316 LECTURE NOTES MATT FREDRIKSON

L9.8 Security Automata & Instrumentation

This is sufficient to implement a basic inlined security automaton enforcement mech-
anism. However, it may impose a severe performance overhead due to all the safety
checks.

4 Dynamic instrumentation

We have been discussing policy enforcement in a somewhat idealized model, where we
assume that programs are given to us as source code in a simple language with few in-
structions. In the “real world” this is not usually the case, and we may be forced to deal
with large untrusted programs given to us to execute at runtime, and possibly without
source code. So we must find a way to enforce policies on bytecode, and presumably
fast lest we introduce unacceptable latency into the system.

Suppose that we wish to implement the inline security automata enforcement scheme
from the previous section by changing the instructions throughout the program prior
to running it. This seems like a reasonable approach, because the scheme just requires
that we check verification conditions on each instruction and replace them when nec-
essary. All that we need to assume is the ability to identify instructions, and compute
verification conditions.

4.1 Challenges for static instrumentation

But bytecode programs on modern architectures like x86 and AMD64/Intel 64 are ex-
tremely difficult to reason about statically, and it may not even be possible to identify
which instructions the program will end up executing. One practical issue is the fact
that programs can generate new instructions by writing to memory, and then use an
indirect jump to begin executing the newly-written code. This can be mitigated by
the operating system with a Write XOR Execute policy, which ensures that any page of
memory may be either writeable or executable, but not both. This is effective, but makes
some functionality extremely difficult to implement such as language interpreters that
do on-the-fly compilation and optimization.

Even with Write XOR Execute, the presence of indirect control flow and variable-
length instruction encoding makes it impossible to tell which instructions will actually
be executed. The program can do an arbitrarily complicated computation to derive a
target address in existing code, so that the static analysis is unable to determine where
execution will resume after a jump. If the target address is in the middle of an existing
instruction, it may result in a completely different program being executed. Consider
the following example, taken from [5].

Bytecode Instruction

f7 c7 07 00 00 00 test $0x00000007, %edi

0f 95 45 c3 setnzb -61(%ebp)

(4)

This code is taken from the entry point of an encryption routine in the GNU C library,
often referred to as simply libc. If execution begins one byte after the entry point of (4),

15-316 LECTURE NOTES MATT FREDRIKSON

Security Automata & Instrumentation L9.9

a completely different program is executed.

Bytecode Instruction

c7 07 00 00 00 0f movl $0x0f000000, (%edi)

95 xchg %ebp, %eax

45 inc %ebp

c3 ret

(5)

Importantly this implies that given a sequence of bytecodes, there are numerous pos-
sible programs that could end up being executed depending on which addresses are
targeted by indirect jumps. In order to instrument the right one, a static analysis needs
to determine what these addresses will be, and this is an undecidable problem in gen-
eral. Moreover, it could be that information not available statically, such as network
packets, are used in part to compute target addresses, adding yet another very plausi-
ble complication for static instrumentation in this setting.

4.2 Instrumenting with just-in-time compilation

Perhaps a better approach given these challenges is to delay “code discovery” until the
program is actually running. This is helpful for many reasons.

• If the program generated instructions in memory and transferred control to them,
we no longer need to infer what those instructions will be. We can simply wait
until the program has already written them, and instrument them immediately
before the control transfer.

• If a program executes an indirect jump, we do not need to predict what the target
address will be. We simply wait until immediately before the jump is executed, at
which point the target address will be stored in memory or a register, and begin
instrumenting the target of the jump.

• Some other cases that we have not discussed are handled similarly, such as li-
braries that are loaded after the program begins executing. In each such case, the
instrumentation is delayed until immediately before the instructions in question
begin executing, at which point all of the necessary information is available.

The obvious drawback to this approach is the fact that we need to examine the execu-
tion as it unfolds, rewriting instructions whenever necessary as dictated by the policy.

Just-in-time compilation. A successful and widely-deployed approach to mitigate
the performance penalty imposed by such a scheme is called just-in-time (JIT) compila-
tion [2]. The key insight behind JIT compilation is to increase the granularity at which
the instrumenter examines code at runtime, looking at “chunks” of instructions rather
than individual ones.

Increasing the granularity in this way allows the instrumenter to compile instruction
chunks, with their instrumentation included, on the fly into optimized code that is then

15-316 LECTURE NOTES MATT FREDRIKSON

L9.10 Security Automata & Instrumentation

executed directly. Further performance enhancements can then be layered on top of this
basic approach, such caching previously-compiled chunks to save redundant work,
as well as more aggressive optimizations to sequences of chunks that end up being
executed more often.

The question then becomes what constitutes a chunk. Larger chunks will generally
create more opportunities for optimization, and because more of the instructions are
dealt with each time, require fewer (expensive) calls to the compiler. However, this
tendency is limited by the fact that if a chunk crosses an indirect control flow instruc-
tion, then we run into exactly the same problems we are trying to avoid with dynamic
instrumentation in the first place. Even if our chunks cross direct, predictable control
flow branches, then we run the risk of doing unnecessary compilation and instrumen-
tation by processing multiple branches when the execution will only end up following
one of them.

The typical approach is to use basic blocks as chunks. A basic block is a contiguous
sequence of instructions that ends in a control flow transfer instruction (e.g., jmp, ret,
call, . . .). For example, the sequence of instructions in (5) is a basic block because it
ends with a ret instruction, which transfers control to the instruction pointed to by the
return address on the stack. On the other hand, (4) is not a basic block because it does
not end in such an instruction.

Using basic blocks as chunks, the instrumenter will begin scanning a sequence of
bytecodes until it reaches a control transfer instruction. It will then instrument each
of the instructions in the basic block as prescribed by the policy, compile the resulting
instructions, and execute them. However, it must ensure that it regains control when
the basic block is finished executing. It then begins scanning instructions again at the
bytecodes pointed to by the instruction pointer, repeating the process all over again. In
this way we can be sure that exactly the code that is executed is instrumented according
to the policy.

A look ahead: Pin. In your next lab, you will make use of an instrumentation tool
called Pin [3] that is based on JIT compilation. Pin is under ongoing development by In-
tel, and is widely used in industry as well as in academic research. It simplifies the task
of instrumenting binaries at runtime by providing a high-level API for both inspecting
and instrumenting sequences of instructions at runtime.

To see why this is helpful, consider the task of instrumenting an x86 binary to prevent
writes to certain portions of memory. To do so, we must rewrite all instructions that can
change memory with instrumentation to stop the unwanted writes. Which instructions
can change memory? The obvious ones are mov, push, pop, lea, xchg, and perhaps a few
others. But what about the many variants of mov, such as movsb, movsw, movz, movzx?
Do the other instructions have variants as well, and how can we be sure that we’ve
covered each one? Pin simplifies things for us by providing INS_IsMemoryWrite(ins),
which returns true if ins can update memory.

Figure 1 shows the architecture of Pin. Users interact with it by writing a “Pintool”,
which is a conventional C or C++ program that makes use of the Pin inspection and

15-316 LECTURE NOTES MATT FREDRIKSON

Security Automata & Instrumentation L9.11

JIT Compiler

Emulation Unit D
is

p
a
tc

h
e
r

Virtual Machine (VM)

Code

Cache

Instrumentation APIs

A
p

p
li

c
a

ti
o

n

Operating System

Hardware

Pin

Pintool

Address Space

Figure 2. Pin’s software architecture

mentation API invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components to
execute the application. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The emulator interprets instructions that cannot be executed
directly. It is used for system calls which require special handling
from the VM. Since Pin sits above the operating system, it can only
capture user-level code.
As Figure 2 shows, there are three binary programs present

when an instrumented program is running: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool contains the instrumentation and analysis routines
and is linked with a library that allows it to communicate with Pin.
While they share the same address space, they do not share any li-
braries and so there are typically three copies of glibc. By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JIT executes the same glibc function, it
will enter the same procedure a second time while the application
is still executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calls glibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

3.2 Injecting Pin
The injector loads Pin into the address space of an application. In-
jection uses the Unix Ptrace API to obtain control of an application
and capture the processor context. It loads the Pin binary into the
application address space and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already running process in the same way as a debug-
ger. It is also possible to detach from an instrumented process and
continue executing the original, uninstrumented code.

Other tools like DynamoRIO [6] rely on the LD PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD PRELOAD does not work with statically-linked binaries, which
many of our users require. Second, loading an extra shared library
will shift all of the application shared libraries and some dynami-
cally allocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain control of the application until after the shared-library loader
has partially executed, while our method is able to instrument the
very first instruction in the program. This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 The JIT Compiler
3.3.1 Basics
Pin compiles from one ISA directly into the same ISA (e.g., IA32
to IA32, ARM to ARM) without going through an intermediate
format, and the compiled code is stored in a software-based code
cache. Only code residing in the code cache is executed—the origi-
nal code is never executed. An application is compiled one trace at
a time. A trace is a straight-line sequence of instructions which ter-
minates at one of the conditions: (i) an unconditional control trans-
fer (branch, call, or return), (ii) a pre-defined number of conditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to a stub, which re-directs the control to the
VM. The VM determines the target address (which is statically un-
known for indirect control transfers), generates a new trace for the
target if it has not been generated before, and resumes the execution
at the target trace.
In the rest of this section, we discuss the following features of

our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on IA32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Trace Linking
To improve performance, Pin attempts to branch directly from a
trace exit to the target trace, bypassing the stub and VM. We
call this process trace linking. Linking a direct control transfer
is straightforward as it has a unique target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirect control transfer (a jump, call, or return) has multiple
possible targets and therefore needs some sort of target-prediction
mechanism.
Figure 3(a) illustrates our indirect linking approach as imple-

mented on the x86 architecture. Pin translates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register %edx (this register as well as the %ecx and
%esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address 0x40001000 (which is mapped to
0x70001000 in the code cache for this example). We compare
%edx against 0x40001000 using the lea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. %ecx=0), we will
branch to match1 to execute the remaining code of the predicted
target. If the prediction is wrong, we will try another predicted tar-
get 0x40002000 (mapped to 0x70002000 in the code cache). If the
target is not found on the chain, we will branch to LookupHtab 1,
which searches for the target in a hash table (whose base address is

192

Figure 1: Pin software architecture (from [3]).

instrumentation API. To run a compiled program under the pintool’s instrumentation,
the program’s binary is passed to Pin along with the compiled pintool. Pin then takes
care of just-in-time compiling the target program, and can invoke callbacks to the pin-
tool as requested for inspection, or rewrite instructions as requested for instrumenta-
tion. As execution proceeds, Pin’s optimization routines run in tandem to progressively
optimize the compiled code.

You will learn more about the specifics of the Pin API in the handout for the next lab,
and get hands-on experience using it to implement SFI as well as a security automaton
policy. For more detailed information on how Pin works, consult the original paper [3].

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity: Principles,
implementations, and applications. ACM Transactions on Information and Systems
Security, 13(1):4:1–4:40, Nov. 2009.

[2] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,
June 2003.

[3] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2005.

[4] F. B. Schneider. Enforceable security policies. ACM Transactions on Information Sys-
tems Secur., 3(1):30–50, Feb. 2000.

[5] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of CCS 2007, Oct. 2007.

15-316 LECTURE NOTES MATT FREDRIKSON

	Introduction & Recap
	Finer-grained control-flow safety
	Security automata
	Enforcing security automata policies

	Dynamic instrumentation
	Challenges for static instrumentation
	Instrumenting with just-in-time compilation

