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Today’s lecture

▶ Why are we discussing this topic?

▶ Final lab overview and expectations
▶ Penetration testing software apps

1. Fuzz testing
2. Concolic execution

▶ If time, tutorial on AFL and KLEE
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Final lab

Find and exploit bugs in others’ code

▶ Given three implementations of lab0-lab2
▶ Find vulnerabilities that lead to security issues
▶ For full credit: turn in at least three bugs

Justify the security concern
▶ Explain what security goal is violated
▶ Give proof-of-concept (PoC) exploit

Explain how to fix it
▶ Don’t need to implement a fix
▶ Detailed account, implementable with minor additional effort
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What’s a security bug?

Zero points for correctness/availability bugs
▶ A crash is not enough!
▶ Not relevant to the goals of previous labs

Focus on things covered in class
▶ Safety: memory and control-flow
▶ Confidentiality: Lab 2 policies, filesystem
▶ Integrity: Host system should be unaffected
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How should you find them?

Short answer: your choice

You are free to use whatever tools you like
▶ Be creative, explore the landscape
▶ But don’t waste too much time on one tool

We have covered (or will) several in class
▶ CBMC
▶ afl-fuzz
▶ KLEE
▶ PIN
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What to report

For each vulnerability, submit a detailed report

1. Identify and justify nature of vulnerability
2. Explain how you found it—we should be able to reproduce!
3. Show how you exploited it, give evidence that you did
4. Explain in detail how to fix it (“fix the parser” is not enough!)
5. Provide any code that you wrote

Each report should be approx. 2-3 pages

Key focus: we need to reproduce your findings from the report!
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Grading

Each report is worth 33 points
15 points. Reproducible vulnerability
10 points. Correct fix given with adequate detail
8 points. Clear explanation of security issue

Extra credit
▶ Implement vulnerability fixes for your server
▶ Depending on scope/difficulty, 5-10 points
▶ Earn back missed points from previous labs!
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No bugs?

What if you really can’t find a bug?

Still potential for full points; report on:
▶ Detailed steps you took to search
▶ What tools you used, and why
▶ Justification for your conclusion

Convince us that there’s nothing to exploit
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Hacking is bug-finding

successful attack = bug-finding + exploitation

How does one find bugs?
▶ Manually inspecting source code, reasoning about correctness
▶ Attempting (and failing) verification
▶ Testing

Advanced testing techniques are widely used in security research
▶ Mandated in Microsoft’s development lifecycle
▶ E.g. fuzzing uncovers “million dollar bugs” in real systems
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Systematic testing

Want to be systematic in how we go about testing

This requires answers to the following questions:
▶ Which inputs do we choose?
▶ How do we check the outputs?
▶ When do we stop?
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Partitioning: which inputs to choose

Can’t test all inputs, random testing doesn’t work (it’s too random)

We want to find a set of tests that:
1. is small enough to run
2. is likely to catch most of the bugs we care about

Intuition: input space is very large, the program is limited
▶ program behavior must be “similar” on many inputs
▶ identify ones yielding similar behavior, pick a representative test
▶ make sure each input partition is covered by a test
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Identifying good partitions

Partitions should correspond to relevant program properties
▶ Good test suite explores most of this space

Two basic approaches: black-box and white-box
▶ Black-box: as the name suggests, view the program as an

opaque function and test to the specification
▶ White-box: use knowledge of implementation & code to

generate representative tests and coverage metrics
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Black-box selection strategies

Enumerate “paths” through the specification
▶ Use requires, ensures, failure/exception cases
▶ Test each valid combination to cover all intended cases
▶ Also: make sure the spec doesn’t miss any possible inputs

Test boundary/extremal values
▶ Choose values close to low and high-end of valid range
▶ e.g., integer range, buffer size, …
▶ Good exercise to find holes in the specification

Off-nominal values
▶ Identify invalid inputs, choose values that test each one
▶ Break invariants and violate assumptions
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Example

What are the relevant features of the maximum function?
(* if l is non-empty, returns the greatest element

if l is empty, returns None *)
let maximum (l : int list) : int option =

...

▶ The size of the list (0, 1, 2, large, very large)
▶ Position of maximum value (beginning, middle, end)
▶ Range of values (negative, positive, max/min values)
▶ Existence of duplicate values
▶ Ordering of elements (ascending, descending, “random”)
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White-box testing

Use details of the implementation to design and evaluate tests
▶ Develop partitions to maximize code coverage
▶ Test internal features like caching, domain-splitting, etc.

Whitebox testing has its own advantages
1. Tests are tailored to the code, easier to find certain bugs
2. Possible to know when you’ve covered the implementation
3. Can oftentimes be automated

Disadvantages:
1. Expensive, and still not verification
2. Automated tools are language-dependent, rely on heuristics
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Coverage metrics: when to stop testing

Goal is to make sure tests cover all the relevant code

There are several ways to measure this
▶ Statements
▶ Branches
▶ Paths
▶ Traces
▶ ...

Each offers a different tradeoff between cost and completeness
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Coverage criteria: statements

Goal: Design a test set such
that each atomic command is
executed at least once

An atomic command contains
no nested statements

▶ Assignments, function
calls are examples of
primitive statements

▶ Loops, conditionals are
not atomic

let f (n: int ref) (c: int ref) =
while !c <> 0 do

if !n > 100 then (
n := !n - 10;
c := !c - 1;

) else (
n := !n + 11;
c := !c + 1;

);
done;
!n
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Coverage criteria: statements

What test set achieves
statement coverage?

(n = 101, c = 1)?
no

(n = 101, c = 1),
(n = 100, c = 1)?

yes
(n = 101, c = 2)?

yes

let f (n: int ref) (c: int ref) =
while !c <> 0 do

if !n > 100 then (
n := !n - 10;
c := !c - 1;

) else (
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Coverage criteria: branches

Goal: Design a test set such
that each branch is executed
at least once

Branching comes from several
constructs:

▶ conditional (if-then-else)
▶ match/case
▶ loops
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Coverage criteria: branches

What tests give us branch
coverage?

Same as before:
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(n = 101, c = 2)
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Coverage criteria: paths

Goal: Design a test set such that
each path is executed

A path is a sequence of statements in
the program:

▶ that takes it from an entry point
to termination

▶ and follows the control-flow
structure

How many paths are in this program?

12: 24 - {duplicates from c1 = 0}

if c1 then
if c2 then

f1();
else

f2();
if c3 then

f3();
if c4 then

f4();
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Coverage criteria: paths

let f (n: int ref) (c: int ref) =
while !c <> 0 do

if !n > 100 then (
n := !n - 10;
c := !c - 1;

) else (
n := !n + 11;
c := !c + 1;

);
done;
!n

How many paths are in this
program?

Too many to test

▶ Bounded by width of
machine integer, squared

▶ This “bound” isn’t any
better than exhaustive
testing

Loops & recursion make
exhaustive path coverage
infeasible
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Fuzz testing
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Fuzz testing

Sitting in my apartment in Madison in the Fall of 1988, there was a wild
midwest thunderstorm pouring rain and lighting up the late night sky. That
night, I was logged on to the Unix system in my office via a dial-up phone
line over a 1200 baud modem. With the heavy rain, there was noise on the
line and that noise was interfering with my ability to type sensible commands
to the shell and programs that I was running ... What did surprise me was
the fact that the noise seemed to be causing programs to crash.

— Prof. Bart Miller
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Fuzzing: what it’s good for

Simple idea: feed random inputs to the program, look for
crashes/exceptions

▶ Works in blackbox, whitebox settings
▶ Can be mostly random, or heavily influenced by existing tests or

program internals
▶ In either case, it’s automated: lots of inputs, no regard for norms

Why is this an effective technique?
▶ Random processes make assumptions, have biases
▶ Faults are good starting points for exploits
▶ It works: Miller found bugs in 33% of Unix utils

Matt Fredrikson, Jean Yang Testing 25 / 35



Fuzzing: what it’s good for

Simple idea: feed random inputs to the program, look for
crashes/exceptions

▶ Works in blackbox, whitebox settings
▶ Can be mostly random, or heavily influenced by existing tests or

program internals
▶ In either case, it’s automated: lots of inputs, no regard for norms

Why is this an effective technique?
▶ Random processes make assumptions, have biases
▶ Faults are good starting points for exploits
▶ It works: Miller found bugs in 33% of Unix utils

Matt Fredrikson, Jean Yang Testing 25 / 35



Black-Box mechanics

Inputs come from many sources
▶ Files, standard input, network, signals, devices, ...

Common strategy: intercept syscalls
▶ open, read, send, ioctl ...

Fuzzers measure coverage as they go
▶ Most fuzzers instrument the target program
▶ Insert bookkeeping to count which instructions visited
▶ Best to rely on compiler for this, but can work on binaries
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Black-Box fuzzing: perturbation-based

Given a program and an existing test:
▶ Perturb the test in various ways
▶ E.g., flip bits, delete/append data
▶ See if the program crashes on any values

This approach can be extended with heuristics.
▶ Which tests to use as seeds?
▶ Strategies for perturbing seeds, ignoring certain types of input

What are the strengths and weaknesses?
1. Easy to use, often finds serious bugs
2. Test seeds can guide search towards less-random inputs
3. Seeds may also bias towards assumptions
4. Doesn’t work well with checksums, grammars/protocols
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Black-Box fuzzing: generational

Given a program and a format description:
1. Use the format to generate valid inputs
2. Iteratively perturb each location in the format
3. See if the program crashes on any values
4. Promote promising inputs to next generation

This is a smarter way of inserting randomness
▶ Adhering mostly to the format ensures that early

consistency/syntax checks are passed
▶ Easier to achieve coverage, requires fewer test cases

What are the weaknesses?
1. Need to provide info about format
2. Format might not match the code, lead to missed bugs
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White-box fuzzing

Problem statement
Given a program and a set of inputs, generate a test set that
maximizes code coverage.

Main idea: Use the code itself to generate random inputs
1. Generate constraints that reflect the program’s control flow
2. Solve the constraints, map solution to corresponding inputs
3. Run program on these inputs, look for crashes or exceptions

This idea was pioneered by Patrice Godefroid at Microsoft

Matt Fredrikson, Jean Yang Testing 29 / 35



White-box fuzzing

Problem statement
Given a program and a set of inputs, generate a test set that
maximizes code coverage.

Main idea: Use the code itself to generate random inputs
1. Generate constraints that reflect the program’s control flow
2. Solve the constraints, map solution to corresponding inputs
3. Run program on these inputs, look for crashes or exceptions

This idea was pioneered by Patrice Godefroid at Microsoft

Matt Fredrikson, Jean Yang Testing 29 / 35



Static test generation

This isn’t always possible

if x = SHA1(...) then
if y > 3 then

f1();
else

f2();
if x < y then

f3();
if y > 3 && x >= y then

f4();

Second path: execute f1, f3

x = SHA1(. . .) ∧ y > 3 ∧ x < y ∧ . . .

Solving requires finding SHA pre-image
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Dynamic symbolic test generation

Generational testing++

Given a program and test case:
1. Run the test case, and collect constraints along the tested path
2. Modify constraints by negating selected literals
3. Solve new constraints, generate corresponding inputs
4. Repeat until all assertions are reached [Korel 1990, ...]
5. Or, generate inputs for all feasible paths [Godefroid et al 2005]

This approach is called DART (Directed Automated Random Testing)
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Example

if x = SHA1(z) then
if y > 3 then

f1();
else

f2();
if x < y then

f3();
if y > 3 && x >= y then

f4();

Start with x = 5, y = 4, z = 0

Assume that SHA1(0) = 5

This yields the path:
assume(x = SHA1(z))
assume(y > 3)
f1();
assume(¬(x < y))
assume(y > 3 && x ≥ y)
f4()

We can still explore f2, f3 by changing y

We fix x and z, change other literals
x = 5 ∧ z = 0 ∧ ¬(y > 3) ∧ ¬(x < y) ∧ . . .
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More intelligent search

Start with a well-formed seed test

Generate the path constraint
▶ Negate each literal independently
▶ Generate a new test for each negation, add to test set
▶ Repeat until resources run out, or we have path coverage

This approach tests many “layers” of the program early

Contrast with classic depth-first approach
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Static test generation

Example from Patrice Godefroid
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DART implementations

This approach has been used in many tools
▶ EXE (Stanford), concurrently with Godefroid’s original work
▶ CUTE (Bell Labs), concurrently with original work
▶ SAGE (Microsoft Research)
▶ PEX (Microsoft Research)
▶ YOGI (Microsoft Research)
▶ Vigilante (Microsoft Research)
▶ BitScope (CMU/Berkeley)
▶ CatchConv (Berkeley)
▶ Splat (UCLA)
▶ Apollo (MIT/IBM)
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