
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Distributed Authorization

Matt Fredrikson

Carnegie Mellon University
Lecture 20

1 Introduction

We have discussed several mechanisms for ensuring that programs and the principals
who use them do not violate security goals. Starting with safety policies, we discussed
a general approach for describing such goals using security automata that monitor the
execution of a system to ensure that “bad things” that violate the policy never happen.
Then we moved on to information flow policies, which can be enforced by type systems
or verified using composition techniques. We saw how they are useful in preventing
unwanted leakage of secret data or the incursion of untrusted data into critical parts of
the system.

In both cases, we implicitly worked under a sort of closed-world assumption that al-
lows both policy author and enforcement mechanism to assume knowledge of who will
use the program (and thus who the target of enforcement is), and what the entire global
policy to enforce will be. A centralized enforcement mechanism—be it a reference mon-
itor or type checker—can then uniformly apply the policy when needed.

In many settings it is unrealistic to make such assumptions. In particular when the
system in question is distributed among multiple autonomous locations and used by
principals who trust eachother to varying degrees, decisions about which principals are
authorized to carry out actions become complicated. The enforcement mechanism must
solve two problems: learn the true identity of the requesting party (i.e., authentication),
and determine whether they are allowed to make the request (i.e., authorization).

Today we will begin discussing a logical formulation of the authorization problem.
The type of formalism that we will cover was pioneered by Lampson, Abadi, Burrows,
and Wobber in the early 1990’s [6], and is an instance of what is known as authoriza-
tion logic. We will learn how to express security policies for distributed systems using
authorization logic, and to reason about policy decisions using formal proof.

https://15316-cmu.github.io/index.html

L20.2 Distributed Authorization

2 A motivating example

The doors in the CyLab portion of the CIC building are controlled by a system called
Grey, which allows CyLab faculty, students, and staff to unlock rooms from a mobile
app or via Bluetooth sensors on their phones. This makes it easy for CyLab to provision
access to rooms in a flexible manner without having to copy and distribute physical
keys. For example, each faculty member has an office, which from the perspective of
the access control policy that member “owns” and should be given unconditional access
to. Some faculty are given additional space for lab equipment and experimental setup,
and in general CyLab may want to institute a policy where students of such faculty are
given access to the lab.

If we were to formalize this, we might define several predicates: owns(A,R) de-
notes that A owns room R; studentOf(B,A) denotes that B is a student of A; and
canOpen(A,R) denotes that A can open room R. Then the most basic rule of CyLab’s
policy might read as shown in Equation 1.

P1 ≡ ∀A.∀R.owns(A,R)→ canOpen(A,R) (1)

Going further, we could define second part of CyLab’s policy as shown in Equation 2.

P2 ≡ ∀A.∀B.∀R.owns(A,R)→ studentOf(B,A)→ canOpen(B,R) (2)

Then if student B of professor A wants to access the lab in room R, the device control-
ling the lock on R should decide whether to grant B access by constructing a proof of
the judgement in Equation 3.

P1, P2, owns(A,R), studentOf(B,A) ` canOpen(B,R) (3)

The assumptions on the left of the sequent contain CyLab’s policy P1, P2, as well as
the basic facts owns(A,R), studentOf(B,A). You should be able to check that this will
work as intended using the rules of first-order sequent calculus.

Perhaps the most important question to ask at this point is, who provides and main-
tains the basic facts like studentOf(B,A)? The most obvious answer would be the
system administrator who is charged with making sure that Grey functions securely
and appropriately for the CyLab residents. But is it reasonable to ask the sysadmin
to keep track of who each of the approximately 100 CyLab graduate students are, and
which rooms they should be granted access to? Keep in mind that students routinely
join CyLab, switch advisors, and leave after graduation. This solution also requires
the sysadmin to keep track of undergraduate students who help with faculty research
projects for a semester, summer interns, and visiting researchers, so in a typical month
the sysadmin may need to deal with adding and removing dozens of entries from the
policy assumptions.

Even for an organization as small as CyLab it seems that tasking the sysadmin with
full responsibility of managing authorization and identity will not scale. Needless to
say, if Grey were scaled up to a larger organization, such as the entire university, then
the unfortunate sysadmin’s job would quickly become untenable.

15-316 LECTURE NOTES MATT FREDRIKSON

Distributed Authorization L20.3

3 Formalizing policy intent: A says P

Rather than leaving the administrator to sort all this out and make sure that it is main-
tained up-to-date, we will extend our logical reasoning with a new construct that ex-
presses the intent of various principals. We use the syntax shown in (4), which repre-
sents that principal A makes statement P .

A says P (4)

In (4), P is a predicate that denotes some fact relevant to the authorization policy. For
example, we might write admin says may-access(Bob, /etc/passwd, modify) to denote
the fact that principal admin states that Bob is allowed to modify /etc/passwd. Going
back to our example from before, we would re-write Equation 1 using says as shown
in Equation 5.

P1 ≡ admin says (∀A.∀R.owns(A,R)→ canOpen(A,R)) (5)

Eq. 5 denotes a statement of policy made by the admin principal. Other principals can
make statements as well, and indeed this was one of our motivations for introducing
says was to distribute the job of managing priveleges among users to other trusted
principals. So if Professor A wishes to allow their student B access to lab facilities
owned by them, they can make the appropriate statement as shown in Eq. 6.

A says studentOf(B,A) (6)

Now if admin trusts professors, who are the only principals allowed to “own” rooms
in this hypothetical scenario, to make honest statements about who their students are,
then the policy line from Eq. 2 can be updated as shown in Eq. 7.

P2 ≡ admin says (∀A.∀B.∀R.owns(A,R)

→ (A says studentOf(B,A))→ canOpen(B,R)) (7)

The says construct is surprisingly powerful in its simplicity. For example, suppose that
admin decided to allow those with access to a room the ability to grant others access.
This can be accomplished with,

admin says ((A says canOpen(B,R)) → canOpen(A,R) → canOpen(B,R)) (8)

This policy says the following: admin states that if A says B can unlock R, then if A can
unlock R, then B is allowed to unlock R.

In short, says allows us to write formulas that express the security-relevent inten-
tions of various principals. This allows us to consider situations where there is no global
authorization policy, but there are instead pre-existing trust relationships between the
various principals.

In our running example, the endpoint devices responsible for unlocking doors in Cy-
Lab would be configured to only trust statements made by admin. As we will see in the

15-316 LECTURE NOTES MATT FREDRIKSON

L20.4 Distributed Authorization

Aside: When to trust says

Access control is about authentication and authorization. Authentication addresses the
problem of identifying principals, whereas authorization deals with the question of
which actions principals are allowed to take. The logic that we are discussing in today’s
lecture is a formal system for describing and reasoning about authorization decisions,
and leaves the matter of authentication unaddressed.

It may be helpful to think of says as abstracting away the details of authentication, and
when working with a formula A says P to simply assume that whatever the system in
question may be, it has a reliable way of determining that A did in fact make statement
P . In practice, there are a number of ways to establish such a fact. For example, the
system might run on an operating system that required A to login using a password,
after which A stated P on a local channel within the trusted OS. Alternatively, A may
be using trusted hardware that identifies them, and is connected to a physically-secure
channel between two machines.

Perhaps the most common way in which this trust is established uses cryptographic
digital signatures. The details of how digital signatures work is outside the scope of
this class (interested readers are referred to Chapter 12 of Katz & Lindell [5]), but for
the purposes of this material it suffices to say that there are algorithms for constructing
messages that 1) cannot be forged except with negligible probability by those who do
not posess a secret key; and 2) can be efficiently attributed to their originator, who holds
the secret key. Such schemes can be used to sign statements like A says P , so that if A’s
secret key was used to construct the signature then others can verify that A did indeed
make statement P .

rest of the lecture, we can formulate reasoning principals for deriving such statements
in the form of says formulas from policy formulas taken as assumptions. So when prin-
cipal A attempts to unlock door R, the endpoint device will only do so if it can construct
a proof of the judgement shown in Equation 9 from its policy stated in assumptions Γ.

Γ ` admin says canOpen(A,R) (9)

We’ll finish this section by pointing out that it need not be the job of the endpoint
to construct a proof of Eq. 9. In fact, the way that the actual Grey implementation
works [1] is an instance of proof-carrying authorization [2], wherein the principal who
wishes to gain access is responsible for constructing a proof that they are authorized to
do so. This is an overall “win” in terms of performance, because the party can often
cache proofs for accesses that they are likely to require often, and all that the endpoint
needs to do is check the proof which can be done efficiently.

4 Reasoning principles

Now that we have seen how to formalize authorization policies using the says con-
struct, we turn to the matter of proving judgements like the one in Eq. 9. In the past

15-316 LECTURE NOTES MATT FREDRIKSON

Distributed Authorization L20.5

when we have developed proof rules and conducted proofs, our goal was concerned
with the truth of propositions, and eventually the validity of formulas. When reason-
ing about authorization, we still need to reason about the ultimate truth of propositions,
but we are also concerned with what various principals believe and will affirm.

To account for this in our reasoning, we introduce a new type of judgement into the
logic, as shown in Equation 10.

Γ ` A aff P (10)

The judgement in (10) reads, “from assumptions Γ, it follows that principal A affirms
P .” The logic that we will develop includes rules for proving such judgements, in
addition to the normal type of judgement that concerns the truth of a formula given
assumptions. Although we simply wrote Γ ` P for such judgements before, we will
now disambiguate them by appending the syntax true, as shown in Equation 11.

Γ ` P true (11)

Eq. 11 is read as “from assumptions Γ, the proposition P logically follows.” This is
distinct from (10), which is a statement about what can be concluded about a principal’s
beliefs from a set of assumptions—(11) is a statement that is independent of the beliefs
or perspective of any particular principal.

It is also important to note that A aff P is not a proposition itself, but rather a judge-
ment that can either be proved or disproved. So for example, it does not make sense
to write A aff P → B aff P , or to construct any formula from A aff P . However,
A says P is a proposition whose truth we would very much like to reason about, be-
cause when making authorization decisions it is essential to know what statements
principals will make.

So how do we relate the judgements (A says P) true and A aff P ? The first rule
SaysR that we introduce for doing so lets us reason that if A affirms P under assump-
tions Γ, then A is willing to state A under those assumptions.

(SaysR)
Γ ` A aff P

Γ ` (A says P) true

The rule SaysR tells us how to reason when A says P is on the right side of a sequent,
and our goal is to prove the truth of such a statement. The reasoning principle embod-
ied in this rule obliges that in order to prove A says P under Γ, we must prove A aff P
under Γ.

What do we do when A says P appears on the left side of a sequent? One possibility
is simply to conclude that if A states P , then P true. But after some thought, this rule
is not satisfactory, because it allows principals to fabricate truth from statements. What
would happen if our policy context had principals that stated contradictory things? For
example, this could happen if one were to assume (12) in addition to the Grey policies
P1, P2 from Eqs. 5,7.

studentOf(B,A), owns(A,R), canOpen(B,R)→ ⊥ (12)

15-316 LECTURE NOTES MATT FREDRIKSON

L20.6 Distributed Authorization

We certainly do not want to admit proofs of ⊥ true, and requiring that principals only
say true things seems draconian and difficult to enforce. Instead, if we have the as-
sumption (A says P) true, then perhaps we can more reasonably use it to conclude that
A affirms some other proposition Q, A aff Q. But when should we be able to conclude
that A aff Q from assumption (A says P) true? We can reason that if A is willing to
affirm Q assuming that A is willing to state P , then requiring a proof of P true to justify
A’s statement is the logical requirement. This is captured in the rule SaysL below.

(SaysL)
Γ, P true ` A aff Q

Γ, (A says P) true ` A aff Q

Now we have left and right rules for says formulas. Looking at them together, we
can see that their premises work together in a useful way that lets us reason about the
affirmations of a principal. Namely, if Γ ` A aff P and Γ, A true ` A aff Q, then the
rules let us reason that Γ ` A aff Q. This should remind you of the cut rule from
propositional sequent calculus earlier in the semester, as it captures similar reasoning
for affirmations.

Finally, we must address the question of when it is appropriate to conclude that A af-
firms a statement P in the first place. Note that SaysL doesn’t quite solve this problem,
as the obligation that it introduces itself contains an affirmation judgement. The rule
Aff below says that any principal is willing to affirm true propositions.

(Aff)
Γ ` P true

Γ ` A aff P

Together with SaysL and SaysR, Aff gives us everything necessary to reason about au-
thorization formulas.

4.1 Revisiting connectives

We could add the term A says P to first-order predicate calculus, and use the rules from
the previous section along with all the others that we learned earlier in the semester. But
consider the judgement in Equation 13, which says that if A says P , then either P must
be true or A is willing to state ⊥.

((A says P)→ (¬P → (A says ⊥))) true (13)

This seems like a bad theorem to have in our logic, because it places a strong burden
on principals: either they must always say true things, or if they don’t then we must
conclude that they are willing to say anything—even ⊥! But is this a theorem? Let’s see
if we can derive a proof.

∗
id P true ` P true, A aff ⊥
¬L P true,¬P true ` A aff ⊥

SaysL (A says P) true,¬P true ` A aff ⊥
SaysR (A says P) true,¬P true ` (A says ⊥) true

→R,→R ` ((A says P)→ (¬P → (A says ⊥))) true

15-316 LECTURE NOTES MATT FREDRIKSON

Distributed Authorization L20.7

(id)
P true ` P true

(→L)
` P true Q true `

(P → Q) true `

(∀L)
Γ, F (e) true ` ∆

Γ,∀x.F (x) true ` ∆

(SaysL)
Γ, P true ` A aff Q

Γ, (A says P) true ` A aff Q

(⊥R)
Γ,⊥ true ` ∆

(→R)
P true ` Q true

` (P → Q) true

(∀R)
Γ ` F (y) true

Γ ` ∀x.F (x) true
(y new)

(SaysR)
Γ ` A aff P

Γ ` (A says P) true

(Aff)
Γ ` P true

Γ ` A aff P

Figure 1: Proof rules for authorization logic of Garg and Pfenning [4].

Indeed we are able to derive a proof, so it seems that if we allow our rules from before,
or at the very least→R, ¬L, and id, then we would have to accept this consequence.

An alternative was proposed by Garg and Pfenning in 2006 [4]. They pointed out that
the above is actually a consequence of admitting the law of excluded middle (LEM) into
the authorization logic, which says that P ∨¬P . In particular, LEM is a consequence of
our negation rules, which is evident in the following derivation.

∗
id P ` P
¬R ` P,¬P

They proposed a constructive authorization logic, in which LEM is not a theorem. The
syntax of their logic is shown in (14).

P,Q ::= p(e1, . . . , en) | > | ⊥ | P → Q | ∀x.P | A says P (14)

In principle there is nothing to prevent us from adding conjunction, disjunction, and
existential quantifiers into the logic (see Garg’s thesis [3] for details), but to keep things
relatively more simple we will stick with just the connectives above.

4.2 Back to the example

Now that we have proof rules to reason about authorization decisions, let us return
to our example about CyLab’s Grey system. To keep our judgements less cluttered,
we will now drop the true notation from standard judgements of truth whenever no
confusion will arise between them and affirmation judgements.

15-316 LECTURE NOTES MATT FREDRIKSON

L20.8 Distributed Authorization

Recall that our system-wide policy was comprised of two formulas of authorization
logic. The first P1 reflects that the administrator states that anyone who owns a room is
allowed to unlock it.

P1 ≡ admin says (∀A.∀R.owns(A,R)→ canOpen(A,R))

The second says that students of faculty who own a room are also allowed to unlock
that room.

P2 ≡ admin says (∀A.∀B.∀R.owns(A,R)

→ (A says studentOf(B,A))→ canOpen(B,R))

We’ll label a few more subformulas just to keep the proof uncluttered.

P3 ≡ ∀A.∀B.∀R.owns(A,R)→ (A says studentOf(B,A))→ canOpen(B,R)

P4(A,B,R) ≡ owns(A,R)→ (A says studentOf(B,A))→ canOpen(B,R)

P5(A,B,R) ≡ (A says studentOf(B,A))→ canOpen(B,R)

Now to make things interesting, suppose that we populate the policy with some ground
facts about the professor with ID mfredrik, his student Tianyu (id tli2), and his office
(identified by cic2126).

Q1 ≡ owns(mfredrik, cic2126)

Q2 ≡ mfredrik says studentOf(tli2, mfredrik)

So putting this all together, the context from which Grey will attempt to conduct autho-
rization proofs is shown in Eq. 15.

Γ ≡ P1, P2, Q1, Q2 (15)

Suppose that Tianyu needs to access cic2126 to pick up the final exams before class.
Tianyu has Grey installed on his phone, so he should be able to do this as long as his
phone is able to construct a proof of admin says canOpen(tli2, cic2126). Let’s begin
constructing this proof.

The first step is rather obvious, as we want to prove a says formula on the right of
the sequent, so SaysR is our only option.

SaysR
Γ ` admin aff canOpen(tli2, cic2126)

Γ ` admin says canOpen(tli2, cic2126)

But after this we need to think a bit before deciding which rule to apply next. Because
the principal attempting to open the door is tli2, who is using the fact that mfredrik
owns it to do so, it seems that P2 is the relevant policy to operate on. To access it, we
need to first apply SaysL to eliminate the admin says around it, following by ∀L using

15-316 LECTURE NOTES MATT FREDRIKSON

Distributed Authorization L20.9

A 7→ mfredrik, B 7→ tli2, R 7→ cic2126. Continuing from where we left off before,
this gives us the following deduction.

P1, P4(mfredrik, tli2, cic2126), Q1, Q2 ` admin aff canOpen(tli2, cic2126)
∀L P1, P4, Q1, Q2 ` admin aff canOpen(tli2, cic2126)

SaysL Γ ` admin aff canOpen(tli2, cic2126)

Now P4(mfredrik, tli2, cic2126) corresponds to the formula in (16).

owns(mfredrik, cic2126)

→ (mfredrik says studentOf(tli2, mfredrik))→ canOpen(tli2, cic2126) (16)

We want to get at the final conclusion of this implication chain. We apply→L twice. No-
tice that the first antecedent owns(mfredrik, cic2126) is simply Q1, and the second an-
tecedent mfredrik says studentOf(tli2, mfredrik) is Q2, so we can immediately us id
in both cases. In the following deduction let Q3 ≡ admin aff canOpen(tli2, cic2126).

→L

id
∗

P1, Q1, Q2 ` Q1, Q3
→L

id
∗

P1, Q1, Q2 ` Q2, Q3
P1, Q1, Q2, canOpen(tli2, cic2126) ` Q3

P1, P4(mfredrik, tli2, cic2126), Q1, Q2 ` Q3

P1, P4(mfredrik, tli2, cic2126), Q1, Q2 ` Q3

Now we can close by applying Aff, which says that principals will affirm true things.
We know that canOpen(tli2, cic2126) is true because it is an assumption in the present
context, so we apply id.

∗
id P1, Q1, Q2, canOpen(tli2, cic2126) ` canOpen(tli2, cic2126)

AffP1, Q1, Q2, canOpen(tli2, cic2126) ` Q3

This finishes the proof of (admin says canOpen(tli2, cic2126)) true. To summarize
the general “flow” of the proof, we began by reducing our proof of what admin says
to a proof about what admin will affirm. We then used the policy that admin has
previously stated, in particular P2 wherein admin said that if a professor states that
someone is their student, and the professor owns a room, then the student is autho-
rized to unlock that room. We used a combination of propositional rules from before
and SaysL to reduce this policy statement into a final confirmation that admin affirms
canOpen(tli2, cic2126).

5 Useful theorems

Now that we’ve seen how to apply the authorization logic of Figure 1 to a realistic
problem, let’s take a look at some general theorems of the logic itself. The first one that
we will consider is sometimes called “Unit”, and says that principals are willing to say
all true things.

15-316 LECTURE NOTES MATT FREDRIKSON

L20.10 Distributed Authorization

Theorem 1 (Unit). The formula
P → (A says P)

is provable from the rules in Figure 1.

Proof. Consider the following deduction.

∗
id P ` P

Aff P ` A aff P
SaysRP ` A says P
→R ` P → (A says P)

The next useful theorem tells us that says is closed under consequence. That is, if A
says that one formula P implies another formula Q, then it follows that if A says P , A
must also be willing to say Q.

Theorem 2 (Closure under consequence). The formula

(A says (P → Q))→ (A says P)→ (A says Q)

is provable from the rules in Figure 1.

Proof. Consider the following deduction.

∗
idP ` P,Q

∗
idP,Q ` Q

→L P → Q,P ` Q
Aff P → Q,P ` A aff Q

SaysL,SaysLA says (P → Q), A says P ` A aff Q
SaysR A says (P → Q), A says P ` A says Q
→R A says (P → Q) ` (A says P)→ (A says Q)
→R ` (A says (P → Q))→ (A says P)→ (A says Q)

The last theorem that we will consider tells us that says is idempotent. That is, if a
principal says that they will say something (i.e., A says (A says P)), then we conclude
that they are willing to just say that something to begin with.

Theorem 3 (says idempotence). The formula

(A says (A says P))→ (A says P)

is provable from the rules in Figure 1.

Proof. This proof is left as an exercise.

15-316 LECTURE NOTES MATT FREDRIKSON

Distributed Authorization L20.11

References

[1] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and
Peter Rutenbar. Device-enabled authorization in the Grey System. In Information
Security, 2005.

[2] Avik Chaudhuri and Deepak Garg. PCAL: language support for proof-carrying
authorization systems. In ESORICS, pages 184–199. Springer, 2009.

[3] Deepak Garg. Proof Theory for Authorization Logic and Its Application to a Practical File
System. PhD thesis, Carnegie Mellon University, December 2009.

[4] Deepak Garg and F. Pfenning. Non-interference in constructive authorization logic.
In 19th IEEE Computer Security Foundations Workshop (CSFW’06), 2006.

[5] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edi-
tion. Chapman & Hall/CRC, 2nd edition, 2014.

[6] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authenti-
cation in distributed systems: Theory and practice. ACM Transactions on Computer
Systems, 10(4), November 1992.

15-316 LECTURE NOTES MATT FREDRIKSON

	Introduction
	A motivating example
	Formalizing policy intent: A says P
	Reasoning principles
	Revisiting connectives
	Back to the example

	Useful theorems

