
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Bootstrapping Trust

Matt Fredrikson

Carnegie Mellon University
Lecture 21

1 Introduction

When we discussed authorization logic, we briefly touched on the topic of trust. More
specifically, authorization logic is distinguished from other logics that we have looked
at by the A says P construct that represents the fact that principal A states proposition
P . We saw how to encode decentralized security policies for systems using says, so that
various entities can define their own access control rules. The system components that
must ultimately either grant or deny access to resources can decide which principals to
trust, and subsequently implement a policy by only accepting says proclamations from
trusted principals.

We illustrated this using the Grey system [2], and now we will see a different example
that emphasizes the importance of organized trust when making policy decisions. You
may be familiar with the eduroam service, which provides members of participating
academic institutions with wireless network access when they visit another institution.
For example, because both CMU and Pitt are members of eduroam, when you visit the
Pitt campus you can join the wireless SSID eduroam, and provide your Andrew ID and
password to use the internet. The same is true at thousands of other institutions across
the world that subscribe to this service.

If you stop to think about it, this is somewhat remarkable given the scale and dis-
parity in geography and governance among the institutions. How does Pitt know that
you have entered the valid credentials for your Andrew account, which is managed by
CMU? A naive solution might be to distribute the credentials of all users at eduroam
institutions to all of the institutions. Obviously this won’t scale, so perhaps a decen-
tralized authorization policy is called for. First of all, the service er can delegate the
responsibility of deciding who is currently a student to the various institutions, for ex-

https://15316-cmu.github.io/index.html


L21.2 Bootstrapping Trust

ample as shown in Equation 1. We use er to denote the eduroam principal.

P1 ≡ er says (∀x.(cmu says isStudent(x))→ isStudent(x)) (1)

Then the main policy governing access to the eduroam wireless network is shown in
Equation 2

P2 ≡ er says (∀x.isStudent(x)→ canAccess(x)) (2)

The wireless access points responsible for providing the service can use (1) and (2) as
assumptions Γ to construct or check a proof of the judgement in Eq 3 when student x
attempts to use the service.

Γ ` er says canAccess(x) (3)

For example, suppose that Tianyu attempts to do so. Let us use the following symbols.

P3 ≡ ∀x.(cmu says isStudent(x))→ isStudent(x)

P4 ≡ ∀x.isStudent(x)→ canAccess(x)

P5 ≡ isStudent(x)→ canAccess(x)

Then the proof begins as follows.

...
∗

Aff,idP3, canAccess(tli2) ` er aff canAccess(tli2)
→L P3, P5 ` er aff canAccess(tli2)
∀L P3, P4 ` er aff canAccess(tli2)

SaysL,SaysL Γ ` er aff canAccess(tli2)
SaysR Γ ` er says canAccess(tli2)

The elided left branch of the proof after→L proves that tli2 is a student from P3.

∀L

→L

` cmu says isStudent(tli2) id
∗

isStudent(tli2) ` isStudent(tli2)

(cmu says isStudent(tli2))→ isStudent(tli2) ` isStudent(tli2)

∀x.(cmu says isStudent(x))→ isStudent(x) ` isStudent(tli2)

In order to complete this proof, the access point needs to be able to assume that cmu
states that tli2 is currently a student. In fact, because the derivation above will be about
the same for any user, except for the details of institution and user names, the end-
point need not recompute or check it for each login. Access boils down to a trusted
institution’s endorsement that the user is legitimate and eligible for the service, so in-
stead perhaps users’ devices can just send evidence of the endorsement directly, or the
endpoint can obtain it by some other means.

But how can the access point be sure that this evidence is authentic? We hinted in the
last lecture that digital signatures utilizing cryptography are a common solution. But

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.3

the cryptographic techniques that enable digital signatures require keys, which are ei-
ther secrets distributed among trustworthy parties, or public objects that can be reliably
associated with individuals or organizations.

For example, cmu could sign and date a certificate stating that tli2 is currently a stu-
dent, perhaps with a timeout to account for Tianyu’s expected graduation date. It
would do so using its private key, known only to CMU, and the access point would
verify it by checking the signature against cmu’s public key. How does the access point
know that it is using the correct public key? What if someone tricked it into using a
different public key, associated with an attacker’s private key, so that it would trust
statements signed by the attacker as coming from cmu?

We will address this topic today, looking more closely at digital certificates and Pub-
lic Key Infrastructure (PKI), which is a distributed mechanism for managing the trust
needed to solve the problems introduced in this example.

2 Digital Certificates & Certificate Authorities

For the rest of this lecture, we will assume that all principals A have a secret key skA
and a public key pkA. Suppose in the context of the running example from the previous
section that the er principal generates the public, private key pairs for all participating
institutions.

Digital signatures. One of the main applications of public/secret key pairs is to digi-
tal signatures, which we have referenced informally before. A digital signature scheme
consists of three algorithms, for generating keys, signing messages, and verifying sig-
natures, respectively. We will always assume that public/secret key pairs have been
generated correctly by some existing means, so we won’t spend any time discussing
the key generation algorithm. It is useful however to look a bit more closely at the
latter two algorithms, signskA(m) and verifypkA

(s), to understand how signatures are
used to establish trust.

The signing algorithm signskA(m) takes as input a secret key skA for a principal
A in addition to a message m, and outputs a signature s. The verification algorithm
verifypkA

(s) takes as input a public key pkA for a principal A and a signature s, and
outputs either true or false. If and only if the signature was produced by calling sign

with A’s secret key skA, i.e. s = signskA(m) for some m, then verifypkA
(s) = true.

Otherwise, verifypkA(s) = false. So in particular verifypkA(s) will return false if s is a
signature created with the secret key of some other principal B 6= A, or more formally
verifypkA

(signskB (m)) = false for all m. This is summarized in (4).

verifypkA
(s) =

{
true if s = signskA(m) for some m

false otherwise
(4)

Technically speaking, the behavior specified in (4) is only required to hold with over-
whelming probability over the keys produced by the generator [6]. For our purposes
however, it is fine to think of (4) as holding all the time.

15-316 LECTURE NOTES MATT FREDRIKSON



L21.4 Bootstrapping Trust

The essential property established by (4) is unforgeability. As long as skA remains a
secret, and the only individual who knows the value of skA is A, then the only messages
that verifypkA

(·) will return true on are those that A actually signed with skA. Of
course, if one wanted to forge a message with A’s signature, they could attempt to guess
skA, which is why it is important that secret keys be chosen completely randomly from
a very large space of possibilities. It is also important that the outputs of signskA(·)
reveal no information about skA that can help one guess the secret key with greater
probability. We will assume that all of these facts hold for the secret keys and digital
signatures used for the rest of the lecture, and we will also assume that if skA was
generated by someone other than A (e.g., er in our running example), then they are
trusted not to sign messages on A’s behalf.

Certificates. Because er knows for a fact that CMU’s public key pkcmu is associated
with the correct principal, it can generate a certificate that asserts this fact with its signa-
ture.

certer→cmu ≡ signsker(isKey(cmu, pkcmu)) (5)

In (5), the predicate isKey(cmu, pkcmu) denotes the fact that the public key pkcmu belongs
to, or is uniquely associated with, the principal cmu. er signs with its secret key sker to
authenticate the certificate, as no other principals should have knowledge of sker and
so only er itself could have produced the cert.

Now if cmu wants to convince one of the access points that Tianyu is in fact a student,
it can use certer→cmu as part of a sequence of messages to do so as shown in (6).

pkcmu, certer→cmu, signskcmu
(isStudent(tli2)) (6)

As long as the access point has er’s public key pker, then it will be able to verify that
certer→cmu is indeed signed by er, and so pkcmu must really belong to cmu, and then
use pkcmu to verify that cmu signed isStudent(tli2). cmu can send this information to
the access point over an insecure channel, and the access point will still be able to trust
the final conclusion.

Certificate authorities. Certificates enable the extension of trust to new principals
from pre-existing trust relationships. In our running example, er is trusted by all access
points to issue certificates for the public keys of other principals. In general, parties
endowed with this sort of trust are called certificate authorities (CAs). The job of a CA is
to issue digital certificates that associate principals with public keys, so in our example
the CA is er.

The CA uses their own public/secret key pair to issue certificates, so those who wish
to verify certificates issued by a particular CA need a reliable and secure way of obtain-
ing the CA’s public key. We will discuss several alternatives for achieving this in the
next section, but for now it is fine to assume that all principals are in posession of the
correct public key for the CA.

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.5

2.1 Formalizing certificates and trust

Now that we have seen how signatures and certificates are used to extend trust relation-
ships, let’s think about how to incorporate this into our reasoning about authorization.
Specifically, we will formalize policies that utilize signatures, certificates, and trust in
the CA so that these elements can be used with existing policies written in authorization
logic. We will encapsulate this in a set of policies that can supplement the assumptions
used in a proof, but one could alternatively incorporate these principles into axioms in
the logic and devise corresponding proof rules [1].

The first way in which we might want to use signatures is to introduce says terms.
Namely, if we are in posession of a proposition P signed with skA, and we know that
skA is the secret key of A, then we can conclude that A says P . We will denote this
policy C1 as formalized in Equation 7.

C1 ≡ ∀x.isKey(x, pkx)→ signskx(P )→ x says P (7)

The assumption that makes C1 reasonable is that if a principal is willing to sign some-
thing, then they are prepared to state it as well. In the base authorization logic, if our
proof goal is a says term, then we had no choice but to apply SaysR and subsequently
prove an affirmation judgement. It is not difficult to see that C1 gives us an alternative
way of proving such goals, namely that whenever C1 is in our assumptions then we can
prove A says P by proving signskA(P ) and isKey(A, pkA) from the other assumptions.

Lemma 1. The Sign rule is applicable whenever C1 is used as a policy.

(Sign)
Γ, C1 ` isKey(A, pkA) Γ, C1 ` signskA(P )

Γ, C1 ` A says P

Proof. This proof is a straightforward sequent deduction that does not use any rules
specific to authorization logic.

∀L

→L

Γ ` isKey(A, pkA)→L

Γ ` signskA(P ) id
∗

Γ, A says P ` A says P

Γ, signskA(P )→ A says P ` A says P

Γ, isKey(A, pkA)→ signskA(P )→ A says P ` A says P

Γ, ∀x.isKey(x, pkx)→ signskx(P )→ x says P ` A says P

Now that we have a way of converting signatures into statements, we want to apply
this towards formalizing the trust extension principle behind certificate authorities and
the certificates that they issue. Recall that the trust placed in CAs is that they will sign
messages that reliably tell us which principals are bound to particular public keys. So
if we know that A is a certificate authority, and we have a certificate certA→B , then this
principle lets us conclude that pkB belongs to B. We formalize this as shown in Eq. 8.

∀x.∀y.isCA(x)→ certx→y → isKey(y, pky) (8)

15-316 LECTURE NOTES MATT FREDRIKSON



L21.6 Bootstrapping Trust

However, certx→y is just a shorthand for signskx(isKey(y, pky)). Using the Sign rule
above we can always convert certx→y into x says isKey(y, pky). Moreover, we might
imagine that there could arise situations where the CA x never explicitly signed a mes-
sage asserting the binding between y and pky, but using other assumptions in our pol-
icy we can apply the rules of authorization logic to conclude that x is willing to say
isKey(y, pky). A more general policy that embodies our trust in the CA is C2 as shown
in Eq. 9.

C2 ≡ ∀x.∀y.isCA(x)→ (x says isKey(y, pky))→ isKey(y, pky) (9)

Just as the Sign rule simplifies the use of C1 in proofs, the Cert rule does so for C2.

Lemma 2. The Cert rule is applicable whenever C2 is used as a policy.

(Cert)
Γ, C2 ` isCA(A) Γ, C2 ` A says isKey(B, pkB)

Γ, C2 ` isKey(B, pkB)

Proof. Just like in the proof on Lemma 1, this fact follows directly from propositional
rules. We omit it here as it should be easy to check.

2.2 Closing out the example

Now that we understand how certificate authorities, digital signatures, and certificates
work, let’s return to the example from the beginning and show how to use these ele-
ments to finish the proof. Recall that we had worked the proof to a single proof obli-
gation, which is the judgement ` cmu says isStudent(tli2). Obviously we will not be
able to prove this judgement, so instead let’s consider what assumptions we might add
to the system to make this goal provable.

We began the discussion in this section by observing that the access point responsible
for discharging or checking this goal needs to be able to trust the cmu actually does say
that Tianyu is a student. We then introduced signatures and certificates, and reasoned
that cmu could send the messages in (6) to the access point.

pkcmu, certer→cmu, signskcmu
(isStudent(tli2))

This suggests that the access point should have Q1 and Q2 below, as certer→cmu is
shorthand for Q1 and Q2 is cmu’s signed statement about Tianyu’s status.

Q1 ≡ signsker(isKey(cmu, pkcmu)) (10)
Q2 ≡ signskcmu

(isStudent(tli2)) (11)

Of course, to reason from these assumptions it will also need the policies C1, C2 that
we just introduced, so that the simpler Sign and Cert rules can take effect. Finally, the
access point will need to assume that er is a certificate authority.

Q3 ≡ isCA(er) (12)

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.7

This is reasonable and practical, as the access points are provisioned specifically to
support the eduroam service, and so during setup we can assume that the correct public
key for er is loaded into memory. So our assumptions Γ = Q1, Q2, Q3, C1, C2.

To complete the proof, we ultimately would like to use cmu’s signed statement to
obtain the objective. We apply Sign, and immediately close out one branch because of
assumptoin Q2.

Γ ` isKey(cmu, pkcmu)

∗
idΓ ` signskcmu

(isStudent(tli2))
Sign Γ ` cmu says isStudent(tli2)

Our remaining obligation is to prove that pkcmu is in fact cmu’s public key. We can use
Cert because of Q3, but we then also need to apply Sign again to get er’s cert into a
statement.

∗
idΓ ` isCA(er)

∗
idΓ ` isKey(er, pker)

∗
idΓ ` signsker(isKey(cmu, pkcmu))

Sign Γ ` er says isKey(cmu, pkcmu)
Sign Γ ` isKey(cmu, pkcmu)

This completes the proof. Now the access point can conclude that cmu vouches for
Tianyu, and so according to the original eduroam policy (P1 and P2 in Eqs. 1 and 2) that
he is allowed to use the network. But notice how the access point is able to draw this
conclusion by trusting only the CA, er in the beginning, and not cmu or tli2. From this
initial seed of trust it was able to “bootstrap” the additional trust assumptions that it
needed to apply the authorization policy. This idea of bootstrapping trust from a few
entities to many through CA designations is a key takeaway of this lecture, and one that
is widely used in practice to enforce authorization on large-scale distributed systems.

2.3 Failure modes

Can principals always rely on certificates and trust relationships to establish authentic-
ity of messages? There are a few situations that the access point needs to worry about,
and they have to do with the assumption that private keys are only known to their respec-
tive principals. If this assumption ever fails, then problems can crop up in a few places
in our running example.

The first case where the assumption can fail is for cmu. Supposing that cmu’s private
key used for signing messages (e.g., signskcmu

(isStudent(tli2))) becomes compromised
and leaks to an untrusted individual who is not authorized to make statements on be-
half of cmu. Then this person can sign messages of their choosing and have others who
believe that pkcmu belongs to cmu believe them with reasonable evidence. In the con-
text of the example, that individual could sign things that are patently false, such as
isStudent(beyonce), and the access point would believe that the messages originated
from cmu. Recalling that the assertion cmu says isStudent(x) is the only thing one

15-316 LECTURE NOTES MATT FREDRIKSON



L21.8 Bootstrapping Trust

needs to establish to access the network, this obviously renders the access control inef-
fective.

The other case corresponding to compromise of er’s secret key has similar conse-
quences when considered in the context of our example. If an attacker is in possession
of er’s secret key, then they gain the ability to generate certificates that look like they
came authentically from er. So rather than using cmu’s secret key directly, this attacker
would generate a separate public/secret key pair pk?, sk?, and use er’s key to certify
that pk? belongs to cmu.

certer→cmu? ≡ signsker(isKey(cmu, pk?)) (13)

They could then convince the access point to allow any principal of their choosing to
use the network, sending the messages shown in (14).

pk?, certer→cmu? , signsk?(isStudent(beyonce)) (14)

As in the previous case, compromise of the secret key sker renders the access control
system pointless.

But outside the narrow context of our example, compromise of signing keys belong-
ing to parties that are widely trusted to certify identities and establish policies is ex-
tremely serious. Without additional measures in place that we will discuss later, it
gives one the ability to fabricate and steal the identities of arbitrary individuals. This
can have dire consequences.

For example, suppose that A and B wish to communicate using their public and
private keys. They trust certificates signed by C, and so if A wishes to send B an
encrypted message, then B will first send A their public key pkB and a certificate issued
by C that attests to the validity of that public key. Then A can encrypt the message using
B’s public key, encpkB (. . .), and B will be able to decrypt with their secret key skB .

A B
pkB ,signskC (isKey(B, pkB))

encpkB (“Hello!”)

Now suppose that a malicious party M has obtained C’s secret signing key. Then if M
is able to intercept all messages passed between A and B, they can read the encrypted
messages intended for B as well as make changes to them. When B sends A its public
key and cert signed by C, then M uses C’s signing key to certify a chosen public key
pkB? (with corresponding secret key skB? known to M ), and forward pkB? to A with
certification instead of pkB . A will believe that pkB? is B’s public key because it came
with a certificated signed by trusted principal C, and use it to encrypt messages to B as
shown below.

A M B
pkB? ,signskC (isKey(B, pkB?)) pkB ,signskC (isKey(B, pkB))

encpkB? (“Hello!”) encpkB (“Goodbye!”)

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.9

Of course, because M knows the corresponding secret key skB? , it can decrypt and
inspect the private messages A sent to B. It can then choose to either re-encrypt the
original message with pkB , or one of its choosing. This is called a Man-in-the-Middle
(MitM) attack, as the attacker literally situates in between two parties who believe they
are communicating over a secure channel.

3 Public key infrastructure

So far we have glossed over the details of how certificate authorities are assigned an
managed. In the eduroam example, we assumed that access points know the correct
pker because they are provisioned expressly for the service, and come pre-loaded with
the necessary data. But certificates are used in all sorts of applications, and it may not
always be possible to transmit the CA’s key in such a way. How do principals come to
trust a CA, and how does the CA know that pkA actually belongs to A in cases where
it does not generate the key? Answers to these questions entail defining a Public Key
Infrastructure (PKI), and there are several alternatives for doing so.

3.1 Centralized CA

The most basic type of PKI consists of a single certificate authority who is trusted by all
principals to issue certificates for everyone’s public keys. Anyone who wants to use the
PKI to establish trust in other principals must obtain a secure copy of the CA’s public
keys, and if they fail to accomplish this, then they will be unable to verify legitimate
certificates issued by the true CA, and may instead end up “verifying” forged certifi-
cates issued by attackers. Protecting against this possibility is typically accomplished
by obtaining a copy of the CA’s key through physical contact, i.e. visiting the CA’s
offices and obtaining a file whose contents can be compared against a known check-
sum. Likewise, to obtain a certificate principals must usually present physical evidence
of who they are, and that the keys they wish to have signed actually belong to them.
Although the details of how this is done vary between CAs, the basic process must be
transparent and rigorous enough so that others trust the CA’s certs.

Another popular form of distribution for this model is to bundle public keys for
widely-known CAs with popular software. This is done with browsers and operat-
ing systems, which typically implement a key store that is pre-loaded with CA keys
that can be automatically verified as needed for validation. However, this approach is
not without its risks, as users are often tricked into downloading corrupted versions of
software that may have additional keys not associated with real CAs pre-loaded into
the store. In this event, all of the failure modes discussed in the previous section are
possible and likely, which is why it is important to always verify checksums for soft-
ware that needs to interact with PKI.

This type of CA is usually a company that charges a fee to issue certificates, or de-
partment within an organization tasked with overseeing security. Because issuing cer-
tificates is a lucrative business model, in practice there are many “centralized” CAs that

15-316 LECTURE NOTES MATT FREDRIKSON



L21.10 Bootstrapping Trust

Figure 1: Example certificate chain used to authenticate the secure nytimes.com web-
site, as displayed in the Chrome browser.

exist, and principals are free to choose whichever one they like when purchasing certifi-
cates for their keys. In one important sense this makes the overall PKI, in which users
can choose which CAs to use and trust, less brittle to compromise of any one CA’s sign-
ing key. In fact, it is considered good practice by some to obtain multiple certificates
for the same key, so that if one CA is corrupted then others still have reason to trust
the authenticity of the key. However, most browsers and operating systems that come
pre-loaded with CA keys are configured to trust all of them equally, so really the entire
PKI is only as trustworthy as the least-trustworthy CA. Ultimately, the responsibility is
placed on end-users to configure their settings in response to corrupt or compromised
CAs as such information becomes available. This is an unfortunate reality as most users
are not equipped to make such decisions, and fixing it remains an open problem.

3.2 Delegated trust and hierarchical CAs

The reality of key compromise and the wide geographical reach of large certificate au-
thorities has led to the emergence of an alternative hierarchical PKI. This model extends
the centralized approach, and still makes use of the key distribution and principal ver-
ification strategies used by the centralized model. But now, the primary “root” CA
delegates the ability to issue certificates to a number of subsidiary or “second-level ”
CAs. Certificates issued by second-level CAs then come with root-issued CAs them-
selves, thus forming a “certificate chain” that can be verified in sequence until reaching
a trusted root CA with a known public key.

We can formalize this delegation policy using authorization logic. All that the CA
needs to do is sign propositions that denote which principals they trust to sign on their
behalf, e.g. with a predicate trusts(·). Then the subsidiary CA can attach the policy in
(15) signed by the root CA to any certificate that it issues using its delegation privelege.

CA says (∀x.∀y.CA says trusts(x)→ x says isKey(pky, y)→ isKey(pky, y)) (15)

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.11

Checking that the rules Sign and Cert described earlier allow others to make effective
use of subsidiary-issued certificates is left as an exercise.

An example of this model in action is shown in Figure 1, which is the current cer-
tificate provided when visiting https://nytimes.com. The root CA in this case is CO-
MODO RSA Certification Authority (we will call this A), and the second-level CA is
COMODO RSA Organization Validation Secure Server CA (we will call this B), which is
the principal who signed the public key of nytimes.com. The browser verifies that the
certificate for nytimes.com was signed by B, and that the certificate for B was signed
by the root CA A. In addition, the browser will check that the root-signed certificate for
B’s public key is authorized to sign certificates itself; this is a special “extension” field
supported by the standard (X.509 [4]) for digital certificates. This special designation
essentially says that B is trusted by A to issue additional certificates on behalf of A, and
that those certificates should be treated as though they were issued by A itself.

The ability to delegate certification authority addresses many of the practial hurdles
in the centralized CA model. Certificate authorities need to shoulder several burdens:
ensuring the secrecy of the signing key, ensuring that the public key is readily avail-
able for verification, and vetting clients who wish to obtain certificates. Splitting these
responsibilities among several subsidiaries makes good logistical sense. However, it
also means that instead of just one signing key, there are now several that must be kept
secret. The root CA must also ensure the integrity of subsidiary CAs, as they have the
ability to issue certificates on behalf of the root CA, and so the trustworthiness of all re-
lated CAs is defined by the least trustworthy subsidiary. In short, while the hierarchical
model solves some problems, it introduces several others.

3.3 Web of trust

An alternative PKI model to the hierarchical trust model is known as Web of Trust
(WOT). While the hierarchical model is widely deployed in operating systems and web
browsers, WOT has been in use for several decades particularly in the context of the
Pretty Good Privacy (PGP) [3] project. In WOT, trust is completely decentralized and
users are responsible for making their own decisions about which certificates to trust.
Likewise, every user is able to issue certificates as they wish, and distribute them at-will
to others.

To get an idea of how this might work, consider a scenario where mfredrik wishes to
send tli2 an email encrypted with his secret key. He sends his public key, along with
certificates certfp→mfredrik signed by the department head fp and certjanh→mfredrik signed
by the 15-312 instructor janh. Supposing that tli2 does not know janh, and so does not
trust the latter cert, he almost certainly has received official correspondence from fp,
and has thus already established the authenticity of his public key. He can thus verify
the first cert certfp→mfredrik, and authenticate mfredrik’s public key prior to decrypting.

The main advantate of WOT over the prior two models is the distribution of poten-
tial failure. There are no concentrated points of failure in the event of compromise,
and everyone is incentivized to proactively authenticate the public keys of anyone they
communicate with. Over time, this tends to build redundancy into the system so that if

15-316 LECTURE NOTES MATT FREDRIKSON



L21.12 Bootstrapping Trust

A1

B1 B2 B3 B4 B5

C1

(a)

A0

A1

A2

A3

A4

(b)

Figure 2: Hierarchical (a) and Web of Trust (b) PKI models, where solid lines correspond
to existing trust relationships and dashed curves to the certificate chains that
must be verified to build new ones. In the hierarchical model, A1 is the root
CA, and B1-B5 are the second-level subsidiary CAs. The second-level CAs
issue most certificates, so if one wants to verify C1’s certificate then they need
to first check that B4 signed C1’s key, and then verify that A1 signed B4’s key.
In Web of Trust, all parties occupy a flat hierarchy, and verify certificates using
previously-verified keys. If A3 wishes to authenticate A1’s key, A3 can ask for
a certificate signed by A3, who is a common point of trust between the two
parties.

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.13

any one user’s signing key becomes compromised then anyone who may need to use a
cert issued by them will still have several options available.

The main drawback is scalability and usability. While WOT remains in use in the
context of encrypted email, it has not become an established alternative for other ap-
plications as it is difficult and time-consuming to develop a robust network of trust
relationships. Additionally, users who are not familiar with public key cryptography
face hurdles in being tasked with maintaining a secure and extensive set of trust rela-
tionships and certificates, and it is not at all clear that this approach is usable outside of
the relatively homogenous group of PGP devotees.

3.4 Dealing with certificate compromise

So far we have discussed the possible consequences of key compromise, and weighed
the potential ramifications of several PKI models on this outcome. But what happens
when a signing key becomes compromised? This poses a significant challenge, as con-
tinued trust in signatures issued with that key cripples the security of applications that
rely on it. The CA needs to disavow, or revoke, the compromised key immediately while
ensuring that users are aware that they should no longer trust the old one. There are
several approaches for doing this, none of them entirely satisfactory. At present, this
remains an open and active research question.

Expiration. Nearly all certificates in use today were issued with an expiration date,
as shown in Figure 1. This facilitates a “default” mode of protection against key com-
promise, as once the expiration date passes verifiers will no longer trust the certificate.
However, expiration alone is not sufficient to fully address the problem, as there is an
untenable conflict between scalability and the burden on CAs to continually issue and
distribute new certificates, and the “window of vulnerability” between compromise
and the certificate’s expiration date. In other words, it is not considered feasible to set
short certificate lifetimes of, say, one day to one week, because if this were common
practice then there would be no way for CAs to keep up with the computational and
bandwidth requirements needed to constantly re-issue new certificates. Typically, CA-
issued certificates have lifetimes that last several years, and this leaves the parties in
question with a potentially large time span in which their operations are affected by
compromise.

Certificate revocation lists. The most common way of handling this problem is for
the CA to maintain a certificate revocation list (CRL). Each certificate is given a unique
serial number, and if the key becomes compromised then the CA is notified that the
certificate with the corresponding serial number should be revoked. The CA distributes
an updated CRL each day, and verifiers are responsible for cross-referencing the list
when checking a certificate.

Because new CRLs must be obtained by users regularly, this solution imposes a sig-
nificant burden on the PKI. Whereas before communications could take place “offline”

15-316 LECTURE NOTES MATT FREDRIKSON



L21.14 Bootstrapping Trust

without needing to communicate with services exclusive to PKI, this is no longer the
case. If the CRL server goes offline, either incidentially or as the result of an explicit
attack, then users can no longer verify certificates without running the risk of accepting
one signed by a compromised key. Additionally, CRLs tend to grow quite large over
time, and this leads to non-trivial bandwidth costs for ISPs and end-users, particularly
those who operate mobile devices. While proposals for incremental CRLs exist ([4],
Section 5.2.4), they are not widely implemented.

Online Certificate Status Protocol (OCSP). A recent alternative to certificate revo-
cation lists is OCSP, which is an active protocol in which parties “pull” information
about certificate status rather than having CAs “push” the information routinely [5].
The details of the protocol are not immediately relevant to our discussion, but it does
offer some interesting tradeoffs to CRLs. The problem that OCSP alleviates is the trans-
mission of large CRLs to end users. Because typical OCSP data transfers occur in re-
sponse to specific certificate transactions, the amount of data in them is significantly
smaller and therefore easier to parse and manage on resource-constrained devices.
However, where connectivity or latency are issues, OCSP may become more burden-
some than if an up-to-date CRL were stored on the device.

OCSP has also raised concern from privacy advocates. The on-demand “pull” nature
of the protocol essentially requires users to tell a central third party whose certificates
they would like to validate. Because much of the web now supports HTTPS, which
requires certificate validation, this means that visiting a secure website from a browser
that uses OCSP (this includes Internet Explorer, Mozilla, Safari, and Opera, but not
Chrome) results in the OCSP server learning that the user visited that website. To make
matters worse, the OCSP proposed standard does not mandate encryption by default,
so third parties sitting between the user and the OCSP server may also be able to snoop
on these requests.

Certificate pinning. A fairly recent practice called certificate pinning addresses the
possibility of CA key compromise. Because there are dozens of root CAs that browsers
are configured to trust by default, if any one of these CAs becomes compromised then
the attacker can issue certificates as that CA for any user or domain. So suppose that
cmu.edu contracts with only one CA for certificate issuance, TrustedCA. Now a new CA,
DiscountCA, enters the marketplace and quickly becomes compromised thanks to their
lax security standards. If browsers and operating systems are already configured to
trust DiscountCA, then the party who compromised their key can now issue certificates
for cmu.edu, even though cmu.edu never used the services of DiscountCA!

Certificate pinning addresses this by allowing parties to “pin” a set of trusted CAs,
so that verifiers will only trust the public keys of pinned CAs chosen by cmu.edu; in this
case, cmu.edu would only pin TrustedCA. Certificate pinning is now common practice
when configuring HTTPS websites, and is supported by all major browsers. One draw-
back to certificate pinning is that it can obviate legitimate network security tools that
essentially use man-in-the-middle attacks to scan encrypted network traffic for mali-

15-316 LECTURE NOTES MATT FREDRIKSON



Bootstrapping Trust L21.15

cious content. Another drawback is that if the CA becomes compromised, then nobody
will be able to verify certificates pinned to that CA until the pin expiration date arrives.

References

[1] Lujo Bauer. Access Control for the Web via Proof-carrying Authorization. PhD thesis,
Princeton University, November 2003.

[2] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and
Peter Rutenbar. Device-enabled authorization in the Grey System. In Information
Security, 2005.

[3] Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1st edition, 1996.

[4] IETF Network Working Group. RFC 5280: Internet X.509 Public Key Infrastruc-
ture Online Certificate Status Protocol – OCSP. https://tools.ietf.org/html/

rfc5280.

[5] Internet Engineering Task Force. RFC 6960: Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) profile. https://tools.ietf.
org/html/rfc6960.

[6] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edi-
tion. Chapman & Hall/CRC, 2nd edition, 2014.

15-316 LECTURE NOTES MATT FREDRIKSON

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc6960

	Introduction
	Digital Certificates & Certificate Authorities
	Formalizing certificates and trust
	Closing out the example
	Failure modes

	Public key infrastructure
	Centralized CA
	Delegated trust and hierarchical CAs
	Web of trust
	Dealing with certificate compromise


