
Assignment 2: Safe in the Sandbox
15-316 Software Foundations of Security and Privacy

Due: 11:59pm, Sunday 9/29/18
Total Points: 50

1. Unfinished business (10 points). In lecture 7, we discussed two cases of the structural induction
used to prove the security of SFI. Complete the inductive case for while commands. That is, assuming
that Equation 1 is valid for α whenever 0 ¤ sl ¤ px & shq | sl ¤ bh   U :

@i. psl ¤ i ¤ shq ^ Mempiq � vi Ñ rαsMempiq � vi (1)

Prove that it is also valid for whilepQqα.

Solution.



2. Bad Rules (10 points). Proof rules have to be sound, i.e., if all premises are valid then the conclusion
must be as well. Show that the following proof rule is unsound by giving a counterexample, i.e. an
instance of the proof rule for which all premises are valid but the conclusion is not valid. For
full credit, you must provide an explanation in words as to why your counterexample demonstrates
unsoundness.

(R1)
Γ $ rαsQ Γ, Q $ rβsP

Γ $ rα;βsP

Solution.



3. Leaky sandbox (20 points). Consider the following language, which resembles a simplified assembly
language.

andpx, yq Take the bitwise-and of variables x and y, store the result in x
orpx, yq Take the bitwise-or of variables x and y, store the result in x
x :� y Copy the value stored in y to x
x :� Mempyq Read the memory at address stored in variable y, save result in x
Mempxq :� y Store the value in y at the address pointed to by x
ifpQq jumpx If Q is true in the current state, jump to the instruction pointed to by x

Programs in this language are sequences of instructions indexed on integers 0 to n, and we refer to the
instruction at index i of program Π with the notation Πi. Note that there are no expressions in this
program. Results of operations are stored in variables, and can be moved into memory when necessary.
Think of variables as acting like registers, so to implement the computation w :� px & yq | z from our
language in lecture we would write the program:

1 : andpx, yq
2 : orpx, zq
3 : w :� x

It is not possible to write w :� orpandpx, yq, zq because neither orpandpx, yq, zq or andpx, yq is a vari-
able, and updates to variables can only be written with other variables on the right hand side.

Part 1 (10 points). We want to implement a sandboxing policy for this language using software fault
isolation. So the proposal is to replace all memory read and write operations as follows. Assume that
sl � 0x15316000 and sh � 0x15316fff, so the memory sandbox is contained in the range of addresses
0x15316000� 0x15316fff.

x :� Mempyq becomes
andpy, 0x15316fffq
orpy, 0x15316000q
x :� Mempyq

Mempxq :� y becomes
andpx, 0x15316fffq
orpx, 0x15316000q
Mempxq :� y

Additionally, we want to prevent indirect jumps from leaving a code sandbox restricted to the range
of instruction addresses 0x00000a00� 0x00000aff. So each indirect jump is rewritten as follows.

ifpQq jumpx becomes
andpx, 0x00000affq
orpx, 0x00000a00q
ifpQq jumpx

Any untrusted code is rewritten using these rules prior to being executed. Unfortunately, we were on
a tight deadline and didn’t have time to prove that this implementation of SFI is secure.



Explain why this instrumentation is vulnerable to memory reads and writes outside the
memory sandbox, and provide an example program in the language that exploits violates
the policy.

Solution.



Part 2 (10 points). Propose an alternative implementation in this language for the policy
in Part 1 that is secure. You may assume that the untrusted code is not allowed to modify some
variables that you select, but be sure to state any assumptions about what invariants must hold of
those variables for your implementation to be secure.

Solution.



4. Jailbreak (10 points). The chroot system call changes the effective filesystem root for the process
that calls it. The main purpose of the call is to create a filesystem sandbox before executing an untrusted
piece of code, so that after the code is loaded and run it should not be able to reference files outside of the
designated directory tree. For example, if a process has as its current working directory /new_root,
then after calling chroot("/new_root") the following program will fail: open("../etc/passwd").
This would be like opening /../etc/passwd, which fails because / is the root of the entire filesystem
and there is no such directory as /..

But calling chroot("/new_root") does not change the process’ current working directory to /new_root.
So if the current working directory is /tmp, then chroot(’/new root’); open(’../etc/passwd’,

O RDONLY) will succeed because the filesystem does not traverse the sandbox directory /new_root to
open ../etc/passwd from /tmp. This is called “breaking the chroot jail”, and is a common pitfall
with implementations of this type of sandbox.

For this reason, it is crucial that programs calling chroot also call chdir("/") immediately afterwards,
before calling open on any filename and before calling chroot again.

Provide a security automaton that captures this policy exactly. For full credit, your solution
should clearly state which states are initial, what the transition symbols are, and how they correspond
to the requirements on system call identifiers and arguments as described in the previous paragraph.

Solution.



5. (Extra Credit) Tough conditions (5 points). As discussed in lecture, bounded model checking
and symbolic execution can be used to find inputs that drive a program down a particular path. It
does this by generating the corresponding path condition, and checking it for satisfiability. If the path
condition is satisfiable, then it generates a model, or satisfying assignment to the variables. When this
assignment is used as the input to the program, it will necessarily end up taking the path used to
derive the condition.

However, this is all contingent on being able to first determine the satisfiability of the path condition
and then subsequently generating a satisfying assignment. The decision procedures used to do this are
subject to the same laws of computability as any other algorithm, and so there is no guarantee that
they will be able to provide answers for every path condition.

Write a short program for which it is unlikely that a decision procedure will be able to produce
satisfying assignments to drive execution down at least one path. Your program is allowed to call
outside functions, e.g. Fibpnq to return the nth Fibonacci number, but be sure to describe precisely
what any such external function computes, and why it is unlikely that a decision procedure will be
able to solve the resulting path conditions.

Solution.


