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1 Introduction & Recap

In the previous lecture we added memory to our language. We assume that the memory
is just an array of values indexed by integers in the range [0, U ], and that it is undefined
on any indices outside this range. Programs can read from memory by dereferencing it
with the syntax Mem(e), and update it with the syntax Mem(e) := ẽ.

We introduced axioms for reasoning about memory updates, being careful about
bounds on accesses as necessary.

([∗]=) [Mem(e) := ẽ]p(Mem)↔ p(Mem{e 7→ ẽ}) ∧ 0 ≤ e < U

([∗]1)
Γ ` e = e′ Γ ` 0 ≤ e′ < U

Γ ` Mem{e 7→ ẽ}(e′) = ẽ

([∗]2)
Γ ` e 6= e′ Γ ` 0 ≤ e′ < U

Γ ` Mem{e 7→ ẽ}(e′) = Mem(e′)

We then defined memory safety for our language as the set of traces for which any
terminal error state Λ is not caused by a memory dereference or update. Using the
axioms to prove safety covers most of memory safety as well, due to the bounds checks.
But they don’t cover dereferences that occur prior to updates, so if we want to ensure
memory safety then we need to put assertions before each memory access that check
to make sure its bounds are within [0, U ]. Then proving any safety property for the
resulting program will also be sufficient to demonstrate memory safety.

But what if we want to enforce a more granular type of memory safety policy to
ensure that parts of our program don’t read or write portions they aren’t supposed
to. This was motivated by our hypothetical career as an app developer who wants to
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L8.2 Software Fault Isolation

monetize with advertising, and is thus compelled by Vladimir’s discount ad shop to
run untrusted rendering code within our program:

if(display ads)α else continue without ads

We discussed sandboxing policies where a region of memory is designated for the un-
trusted α to “play” in, such as the upper portion of memory at addresses 8-15 in the
diagram below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Memory

As long as we can enforce this policy, and we are careful about writing our program to
save and restore variable state, then we can ensure that whatever the sandbox does will
not affect the rest of our program’s execution.

We can certainly enforce such a policy by inserting assert(Q) commands before any
memory read or write, to make sure that the indexed memory doesn’t point outside
the designated sandbox. But this approach has serious drawbacks. First, if α is simply
buggy and makes accesses outside the sandbox, then the entire program will abort and
our app will “crash” as far as the user is concerned. Second, Vladimir can actually force
this outcome if he is maliciously inclined, and we certainly don’t want to give such an
attacker that kind of leeway.

Today we will discuss an approach called software fault isolation [SMB+10, YSD+09]
(SFI) for properly isolating the malicious or buggy effects of α from the rest of our
program. SFI works by inlining enforcement directly into α, changing its behavior so
that it can’t violate the sandbox policy and if it attempts to do so then it still won’t have
any effect on the rest of our execution. SFI is a very practical technique, and has been
used effectively in real applications to isolate untrusted code execution from browsers,
operating systems, and other critical applications. In the next lab, you will implement
a prototype SFI policy for your server.

Then we will look at a related technique called control flow integrity [ABEL09], which
ensures that the attacker cannot influence the control flow of a program to diverge from
a pre-defined control flow policy. But in order for this defense to have any purpose, we
need to introduce indirect control flow commands into our language, bringing it closer
yet to the features that real platforms in need of rigorous security defenses have in
practice.

2 SFI: isolating sandbox policy violations

Rather than checking whether memory accesses are safe and aborting if the check fails,
perhaps we can force all untrusted accesses to be within the sandbox. In the diagram
above, we use the specific sandbox policy sl = 8, sh = 15. Let us assume that our
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language operates over machine integers, so that the sandbox boundaries are the binary
constants:

sl = 0b1000, sh = 0b1111

So the range of valid sandbox addresses is 0b1000, 0b1001, 0b1010, . . . , 0b1111. Any
valid address will have the fourth bit set to 1, and all greater bits set to 0. Given an
arbitrary term e, we can use bitwise operations to force it to a value in this range:

(e & 0b1111) | 0b1000 (1)

What does this term accomplish? By first AND’ing the memory index e with 0b1111,
we ensure that none of the bits that are more significant than the fourth are set to 1.
This forces the term to be no greater than 0b1111, or 15 in decimal. By OR’ing this
result with 0b1000, we ensure that the bit in the fourth position is set to 1, which means
that the result can be no less than 23 = 8. Thus, this term over the original index e has
the effect of forcing accesses within the sandbox,

sl = 8 ≤ (e & 0b1111) | 0b1000 ≤ sh = 15

From now on, we will use hexadecimal rather than binary when writing such constants,
so Equation 2 becomes (e & 0xF) | 0x8. If we assume that our sandbox regions always
comprise integral boundaries (i.e., 0x0000-0x00FF, 0x0100-0x01FF, 0x0200-0x02FF), then
we can generalize this to:

(e & sh) | sl (2)

With this in mind, we change the way we instrument programs.

• Replace each command of the form Mem(e) := ẽ with a new composed command:

Mem((e & sh) | sl) := ẽ

This will ensure that α doesn’t update any locations outside the sandbox.

• For any command β containing the term Mem(e), replace Mem(e) with Mem((e & sh) | sl).
This will ensure that α doesn’t read any locations outside the sandbox.

This is called software fault isolation (SFI). The benefit of this approach is that as long as
the sandbox is configured correctly for the memory, so that

0 ≤ sl ≤ sh < U (3)

Then after instrumenting the untrusted program α, we know that (1) it will not violate
the sandbox safety policy, and (2) it will also be memory safe!

The semantics of the instrumented program will certainly differ from the original
α, in particular if it made unsafe memory accesses, and this may lead to bugs in the
instrumented code that cause it to behave otherwise than expected. But this need not
concern us, as our program will be completely isolated from the effect of these bugs, at
least when it comes to the state of the memory.
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Correctness of write instrumentation. But how do we know that the instrumented
program will actually satisfy the sandbox safety policy? Before when we used assert(Q)
commands, we might have gotten away with an informal argument because the cor-
rectness was totally obvious. But now our instrumentation does strange things with
bitwise operators to force certain behaviors. We should really be more formal about
this to make sure we didn’t screw things up.

The question becomes, how do we formalize the correctness of our sandbox policy
as a safety property? Before we reasoned that the “bad thing” is a certain type of event,
i.e. a read or write to memory locations outside the sandbox. We don’t know how to
prove things about these sorts of events, because all of the properties we have looked at
so far define bad things directly in terms of state. Perhaps we can think in terms of the
effect that violations will have on program state instead of the events that bring those
effects into being.

The first type of instrumentation purports to cover all write events. If α violates the
policy by writing outside the sandbox, then the bad thing in terms of state would be
that the contents of non-sandbox memory after α terminates differ from their contents
prior to running α. This sounds like something that we can formalize in dynamic logic
using familiar properties, i.e. contracts.

∀i.∀v.¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [α]Mem(i) = v (4)

But how can we prove this without knowing anything about what α is? We can reason
inductively on the syntax of programs, which is what the proof of Theorem 1 does.

Theorem 1. Let α be a program whose memory update commands have been instrumented
as prescribed by software fault isolation, and the sandbox low and high bounds are configured
correctly, so that for all x:

0 ≤ sl ≤ (x & sh) | sl ≤ sh < U (5)

Then all valid memory indices outside the sandbox retain the same value after executing α as
they had prior to executing it. In other words, Equation 4 is valid.

Proof. We will proceed by induction on the structure of α. That is, we will show that
for all of the simplest (base case) forms that α can take, the claim holds. Then we
will use the inductive hypothesis for more complex forms of α, showing that the claim
holds whenever we assume that it does for any subprograms inside of α. The inductive
case thus covers all possible programs that can be constructed according to the syntax
we introduced at the beginning of the lecture. This means that regardless of how α is
implemented, the safety claim will hold.

The base cases of this proof correspond to programs that contain no other program
constituents, i.e. x := e, Mem(e) := ẽ, and assert(Q). The inductive cases are programs
that contain other programs, i.e. α;β, if(Q)α elseβ, and while(Q)α. We will com-
plete the most challenging base case to outline the form of the proofs of the others, and
leave the remaining ones as an exercise. We will do the same for one inductive case,
leaving the rest as an exercise.
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Base case Mem(e) := ẽ: The instrumentation will replace this command with:

Mem((e & sh) | sl) := ẽ

Then the following sequent derivation demonstrates correctness. Note that we use ∀R,
which is detailed in the aside at the end of these notes.

∀R,∀R

→R,∧L

[∗]=
¬(sl ≤ i ≤ sh), Mem(i) = v ` Mem{(e & sh) | sl 7→ ẽ}(i) = v . . . ` 0 ≤ (e & sh) | sl < U

¬(sl ≤ i ≤ sh), Mem(i) = v ` [Mem((e & sh) | sl) := ẽ]Mem(i) = v

` ¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [Mem((e & sh) | sl) := ẽ]Mem(i) = v

` ∀i.∀v.¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [Mem((e & sh) | sl) := ẽ]Mem(i) = v

Note that in the above, the elided (. . . ) assumptions on the top-right branch are identical
to those in the top-left branch. They are left out only to ensure that the tree fits in the
margins.

The right branch is left open, but we can discharge it from our assumption (5) in the
theorem statement. At this point we need to split into cases on the left branch, because
it could either be that i = (e & sh) | sl or i 6= (e & sh) | sl. Depending on which case it is,
we use [∗]1 or [∗]2. We case split with the cut rule. In the following, let

P1 ≡ i = (e & sh) | sl, P2 ≡ i 6= (e & sh) | sl, P ≡ P1 ∨ P2

Then we continue with the proof as follows:

cut

ZM

∗
` P

∨L
1© 2©

¬(sl ≤ i ≤ sh), Mem(i) = v, P ` Mem{(e & sh) | sl 7→ ẽ}(i) = v

¬(sl ≤ i ≤ sh), Mem(i) = v ` Mem{(e & sh) | sl 7→ ẽ}(i) = v

The two remaining branches correspond to the cases where memory is dereferenced at
the updated address (e & sh) | sl ( 1©), or anywhere else ( 2©). Continuing with subtree
1©:

¬L
Mem(i) = v, i = (e & sh) | sl ` sl ≤ i ≤ sh, Mem{(e & sh) | sl 7→ ẽ}(i) = v

¬(sl ≤ i ≤ sh), Mem(i) = v, i = (e & sh) | sl ` Mem{(e & sh) | sl 7→ ẽ}(i) = v

This part of the derivation asks us to prove that either sl ≤ i ≤ sh or Mem{(e & sh) | sl 7→
ẽ}(i) = v, from the assumptions that Mem(i) = v and i = (e & sh) | sl. Let’s think about
the cases a bit.

• We could try to prove that Mem{(e & sh) | sl 7→ ẽ}(i) = v. At first glance this might
seem promising, because of the assumption that Mem(i) = v. But we also assume
that i = (e & sh) | sl, and [∗]1 tells us then that Mem{(e & sh) | sl 7→ ẽ}(i) = ẽ. We
don’t have an assumption which says that v = ẽ, which we would need to do the
proof this way.

• We can alternately prove that sl ≤ i ≤ sh. We have in our context that i =
(e & sh) | sl, and the theorem assumes (5) which gives us an even stronger prop-
erty 0 ≤ sl ≤ (x & sh) | sl ≤ sh < U . We can invoke ZM to discharge the obligation:

0 ≤ sl ≤ (x & sh) | sl ≤ sh < U → sl ≤ i ≤ sh
We complete the proof of subtree 1© this way, and can move on with the proof.
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Now we complete this case of the proof by deriving 2©.
Note that we begin by applying the WL rule, which removes some unneeded as-

sumptions from our context and makes the proof more concise.

(WL)
Γ ` ∆

Γ, P ` ∆

This rule is perfectly sound, which you can verify yourself as a proof exercise.

WL

=R

[∗]2

id
∗

Mem(i) = v, i 6= (e & sh) | sl ` i 6= (e & sh) | sl
Mem(i) = v, i 6= (e & sh) | sl ` 0 ≤ i < U

Mem(i) = v, i 6= (e & sh) | sl ` Mem{(e & sh) | sl 7→ ẽ}(i) = Mem(i)

Mem(i) = v, i 6= (e & sh) | sl ` Mem{(e & sh) | sl 7→ ẽ}(i) = v

¬(sl ≤ i ≤ sh), Mem(i) = v, i 6= (e & sh) | sl ` Mem{(e & sh) | sl 7→ ẽ}(i) = v

The unfinished portion of the proof assumes that Mem(i) = v and i 6= (e & sh) | sl imply
that 0 ≤ i < U . Recall that memory dereferences are undefined whenever the index is
out of bounds, and our assumption is that the memory at index i is in fact defined, and
takes the value v. From this we conclude that i must be in bounds. This completes the
base case for memory updates.

Inductive case α;β: Suppose that the program is a composition of α and β. The
inductive hypothesis lets us assume that:

∀i.¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [α]Mem(i) = v (6)
∀i.¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [β]Mem(i) = v (7)

Then consider (ω, . . . , µ) ∈ JαK and (µ, . . . , ν) ∈ JβK. We have the following which says
that the memory outside the sandbox in the initial state remains unchanged until the
final state, for both α and β:

∀i.¬(sl ≤ i ≤ sh) ∧ ωM (i) = v → µM (i) = v (8)
∀i.¬(sl ≤ i ≤ sh) ∧ µM (i) = v → νM (i) = v (9)

This follows directly from the semantics of Mem(i), which refer to the memory compo-
nent of states ω, µ, and ν, and the box modalities in (6) and (7).

Notice that the right side of the implication in (8) matches up with the latter half of
the conjunction in the left side of the implication in (9). From this and the semantics of
α;β, it must then be that for all (ω, . . . , ν) ∈ Jα;βK we can say:

∀i.¬(sl ≤ i ≤ sh) ∧ ωM (i) = v → νM (i) = v (10)

Then (10) and the semantics of the box modality with α;β tell us that

∀i.¬(sl ≤ i ≤ sh) ∧ Mem(i) = v → [α;β]Mem(i) = v (11)

This completes the inductive case for composition.
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Rest of the proof: The remaining cases are left as exercises. The remaining base cases
should be relatively straightforward to complete, because they correspond to program
forms that do not affect the memory state at all. The inductive cases follow the form
outlined for α;β above, using the inductive hypothesis as well as the semantics of pro-
grams and dynamic logic to conclude that whenever subprograms satisfy the sandbox
policy, the larger programs that contain them do as well.

So we have now concluded that software fault isolation prevents memory write oper-
ations from working outside the designated sandbox. What about read operations? The
second form of instrumentation is applied to terms that read from the current memory
state, and we expect that they will prevent programs from unauthorized reads for the
same reasons that write operations are safe.

Correctness of read instrumentation. We based our proof of write operations on
the fact that it can be formalized as a safety property over program state. We reasoned
that if the instrumentation were not sufficient, then there would be evidence at the
end of α’s execution in the form of memory contents that were modified from their
initial value. But can we say something similar about memory read operations? What
evidence in the state will there be if the instrumentation is not correct, and α succeeds
at reading a memory location outside the sandbox?

We might say that if there was a successful read outside the sandbox, then one of
the program variables, or perhaps one of the sandbox memory cells, will contain a
value that was initially in the memory outside the sandbox. But this need not be the
case, because what if α makes an unauthorized read, and then performs an operation
in the result before storing it in a variable or memory? On the other hand, suppose
that in α’s final state, one of the variables did take the same value as an unauthorized
memory location. Are we certain that it took this value because of an unauthorized
read, or could it be mere chance the α happened to compute a value that overlapped
with outside memory?

This question drives to a fundamental difference between safety and information
flow properties. We’ve learned that safety properties can be viewed as collections of
traces, so all that we need to do to reason about whether a program satisfies such a
property is make sure all of its traces are in the property. This is what SFI accomplishes
when it forces memory accesses to a particular range, because the property says that
all traces must only make accesses within that range. Likewise, this is what we prove
when we use dynamic logic sequent calculus deductions to reason about safety: that all
terminating traces are in the set described by the property.

But information flow properties are fundamentally different. They cannot be de-
scribed as sets of traces, and in fact must consider what might have happened on a
different trace if some variable or memory location had taken a different value. To rea-
son convincingly about the correctness of the read operations we need to be able to
refer to and prove things about information flow properties, i.e. that information out-
side the sandbox does not flow into any of the variables or memory locations within
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Aside: Rules for quantifiers

Our proof of SFI correctness used a rule that we have not seen before: ∀R. The rule
allows us to remove the quantifier, replacing the bound variable with a new variable
that does not appear anywhere else in the sequent. This is equivalent to saying that
if we can prove that F (y) holds on some y for which we make no prior assumptions,
then we can conclude that it holds universally. The corresponding left rule (∀L) says
that if we can prove something assuming F holds for a particular term, say e, then
we can prove it assuming that F holds universally. Intuitively, we’ve only made our
assumptions stronger by assuming that F holds universally.

(∀L)
Γ, F (e) ` ∆

Γ,∀x.F (x) ` ∆
(∀R)

Γ ` F (y),∆

Γ ` ∀x.F (x),∆
(y new)

The rules for existential quantifiers are similar, but in this case, it is the left rule in which
we need to be careful about renaming. Similarly to the ∀R, if we can use the fact that
F (y) holds to prove ∆, and nothing in our assumptions or ∆ mentions specific things
about y, then we can conclude that the details of y don’t matter for the conclusion, and
the only important fact is that some value establishing F (y) exists. The ∃R simply says
that if we can prove that F holds for term e, then we can conclude that it must hold for
some value, even if we leave the value unspecified.

(∃L)
Γ, F (y) ` ∆

Γ,∃x.F (x) ` ∆
(y new) (∃R)

Γ ` F (e),∆

Γ ` ∃x.F (x),∆

the sandbox. This will be a topic of future lectures, where we will take a completely
different approach to policy enforcement.
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