
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Web Security: Application Model &

Same-Origin Policy

Matt Fredrikson

Carnegie Mellon University
Lecture 20

1 Introduction

So far we have studied two very general types of security policies: safety and infor-
mation flow. We have done so without referring to specific types of systems that are
in common use, and for the most part without describing concrete vulnerabilities that
these policies are meant to protect against. In today’s lecture, we will begin looking
at these policies in the context of web applications. We will first get some background
on how web applications are structured and what the potential sources of vulnerabil-
ity are, and then look at various forms of attack that exploit lapses in safety and in-
formation flow security. Throughout, we will discuss mitigation techniques and best
practices. This unit will cover the next 2-3 lectures, starting with an overview of web
application architectures and injection vulnerabilities today.

2 Web Applications

Before we can understand issues involving safety and information flow on the web,
we need a bit of background on how web applications are typically developed, how
they function, and the platform that they execute on. Web applications are multi-tiered
applications that consist of code on a client, which is operated by the end-user who runs
a browser, and a server that is operated by the web application owner. We’ll first look at
the client, and then the server, and finally see how the pieces fit together.

https://15316-cmu.github.io/index.html

L20.2 Web Security: Application Model & Same-Origin Policy

2.1 Hyptertext Transfer Protocol

The client and server components of a web application communicate with each other
using Hyptertext Transfer Protocol, often referred to as HTTP. While we will focus on the
situations where the client is a web browser, this need not be the case, and there are
many different types User Agents that consume data obtained via HTTP – mobile apps,
video game consoles, and Internet of Things devices such as “smart” thermostats and
other home appliances are all examples of HTTP clients.

HTTP dates back to the 1980s, and allows the client to request a resource specified by
a Uniform Resource Location, or URL. A URL consists of the following elements:

scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment]

Scheme. A URI scheme specifies the protocol that should be used to look up the re-
source. The most common schemes on the web are http and https, but you have
probably also encountered ftp, mailto, file, and irc.

User and password. Optionally, a URI can contain a username and password for re-
sources that require password authentication.

Host. The host can be a registered name (e.g., google.com or andrew.cmu.edu) or an
IP address (e.g., 28.2.42.10).

Port. The network port number on which the resource can be accessed. Ports are given
by 16-bit integers, and common numbers are 80 (for http resources), 443 (https),
and 143 (IMAP email protocol).

Path. The path component is a hierarchical, slash-separated string that typically re-
sembles a file path.

Query. Non-hierarchical data that is typically used to pass arguments to the server side
of a web application in the form of key-value pairs. For example, the query string
q=cmu is used by Google’s search engine to specify the search query, so navigating
to google.com/search?q=cmu will return the search results for query “cmu”.

Fragment. The fragment portion of a URI can specify a secondary resource, such as a
section heading within a page or a location somewhere in the middle of a file.

An HTTP session is a sequence of request-response transmissions between a client-
server pair. The server listens for connections on a well-known TCP port, typically 80
or 443. On receiving a connection and subsequent request, the server responds with a
status code, and barring an error, a message with the contents of the requested URL.

Requests and responses. There are several types of requests that a client can make
of a server. Two that are most often encountered in typical browser sessions are GET
and POST.

15-316 LECTURE NOTES MATT FREDRIKSON

Web Security: Application Model & Same-Origin Policy L20.3

GET index.html HTTP /1.1

Accept: text/html image/gif , image/x-bitmap , image/jpeg

User -Agent: Mozilla /5.0 (Windows NT 10.0; Win64; x64)

Host: cmu.edu

Connection: keep -alive

Figure 1: Example HTTP GET request.

• A GET request asks the server for the contents of the specified URL, and nothing
else. Importantly, this request should have no other effect on the requested URL.

• A POST request asks the server to accept some data contained in the request for
processing or annotation of the URL. For example, these requests are commonly
used to transmit the information entered by a user in a web form to the server.

Other types of requests include HEAD (return the header of a response without the
body), PUT (store the request contents under a specified URL, or create the URL if it
does not exist), DELETE (remove the specified resource), and OPTIONS (query the
server for implemented methods). We will not discuss these types of requests further,
as they are often not implemented, disabled, or irrelevant to the security issues we will
focus on.

In addition to one of the methods listed above, and HTTP request may contain a
number of headers that provide additional information. The Internet Engineering Task
Force (IETF) has standardized a number of header fields, and there are many more that
are commonly used and supported by modern browsers, but have not been standard-
ized. Figure 1 shows an example of a typical GET request. The path of the requested
URL is given after the method name, in this case index.html. This is followed by a list
of content types that are accepted by the client, and a User-Agent string that identifies
the server being used by the client to make the request. The Host field identifies the do-
main name of the server, which may be needed if, for example, the server hosts several
domains at the same time. Finally, the Connection field specifies configuration direc-
tives desired by the client. In this case, the client tells the server to keep the underlying
network connection alive, and await further requests.

The response sent by the server contains a status code, followed by a list of header
fields, an empty line, and lastly the contents of the URL. An example is shown in Fig-
ure 2.

Maintaining state. Most web applications are stateful, and account for the user’s in-
teraction with a sequence of URLs across the span of a session. Examples of stateful
behavior include authenticating users, maintaining shopping carts, remembering pref-
erences, and tracking user behavior. However, the basic HTTP protocol we have dis-
cussed so far is stateless, so some additional data in the form of a cookie is needed to
associate requests with sessions.

15-316 LECTURE NOTES MATT FREDRIKSON

L20.4 Web Security: Application Model & Same-Origin Policy

HTTP /1.1 200 OK

Date: Tue , 10 April 2018 22:38:34 GMT

Content -Type: text/html; charset=UTF -8

Content -Encoding: UTF -8

Content -Length: 138

Last -Modified: Mon , 09 April 2018 23:11:55 GMT

Server: Apache /1.3.3.7 (Unix) (Red -Hat/Linux)

<html >

<body >

Hello World

</body >

</html >

Figure 2: Example HTTP response.

A cookie is a small piece of data that is sent by a user’s browser to a web server.
Cookies are associated with a domain and path, so that all requests that match these
elements result in the browser sending the cookie along with a request. Cookies can be
set in HTTP responses, or from JavaScript code running in the browser. Although the
data stored in cookies can be arbitrary (but limited in size), most of the time they contain
unique identifiers that tell the server who the user is. Figure 3 shows the sequence of
messages that result in the establishment and use of a cookie. Notice that because the
server did not specify an expiration date on the cookie, the browser will treat it as a
session cookie in this example.

There are two types of cookies: persistent cookies and session cookies. Persistent
cookies are stored in the browser permanently (although most browsers allow users to
delete them whenever they want), and are used to track users across multiple sessions
including ones that span browser shutdown. Persistent cookies have a specified expi-
ration date, after which the browser will automatically delete them. Session cookies
are ephemeral, and reside in the browser’s memory only for as long as the user navi-
gates the website. Session cookies have no expiration date, and disappear once the user
closes the browser tab or navigates away from the website.

Cookies enable applications that first authenticate users with a login challenge (e.g.,
apps that request a username and password). When the user visits the login site, they
complete a form containing username and password. These are sent to the server-
side portion of the app (e.g., using URL parameters over an encrypted connection),
which checks the provided credentials against a back-end database. If the correct cre-
dentials were provided, then the server responds by sending a response containing a
session cookie that the server-side app associates with the successfully-authenticated
user. They can then navigate the website without having to provide credentials each
time they need to view protected content.

15-316 LECTURE NOTES MATT FREDRIKSON

Web Security: Application Model & Same-Origin Policy L20.5

Client Server

GET /index.html

Set-Cookie:token=abc123

GET /index.html

Cookie:token=abc123

Personalized content
for individual abc123

Figure 3: Simplified sequence of requests and responses to establish and utilize a
cookie. If an HTTP request does not contain a cookie header, then the server
responds by setting a cookie that is remembered by the browser and included
in future requests.

2.2 Web apps on the client

The client side of a web application is run inside of a browser, which is a native program
that makes requests to remote servers, downloads the code and associated data of the
web app, and renders it in a graphical interface displayed to the user. Although the
internal architecture of browsers varies from vendor to vendor, the architecture of the
Chromium engine shown in Figure 4 is representative enough for our purposes in this
lecture.

The browser consists of a main process that manages the user interface, the (poten-
tially) multiple tabs, and and plugins (also called extensions). This is referred to as
the “browser process” or sometimes simply the browser. Each open tab corresponds
to a separate renderer process that is ultimately responsible for running the web ap-
plication code and deciding how the results should be displayed in the user interface.
Finally, each tab can contain resources fetched from different sources, called frames. For
example, websites often include frames for advertisements, where the contents of an
advertising frame come from a different domain than that of the main content.

Chromium implements each process in the architecture as its own operating sys-
tem process. There are several good reasons for doing this [BRJI08], mostly having
to do with robustness to programming bugs and security. Because OS processes have
hardware-enforced memory isolation boundaries, bugs, vulnerabilities, and exceptions
that arise in one process can have limited effect on others that are running concurrently.
So keeping the rendering engines separated from eachother and the main browser pro-
cess ensures that bugs and vulnerabilities that arise when rendering content remain
somewhat isolated in their effect on the rest of the tabs and browser. The downside

15-316 LECTURE NOTES MATT FREDRIKSON

L20.6 Web Security: Application Model & Same-Origin Policy

Figure 4: The multi-process architecture of the Chromium browser engine. Im-
age source: https://www.chromium.org/developers/design-documents/

multi-process-architecture

15-316 LECTURE NOTES MATT FREDRIKSON

https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture

Web Security: Application Model & Same-Origin Policy L20.7

to this architecture is the overhead created by running a potentially large number of
distinct processes that make frequent use of inter-process communication, leading to
decreased system-wide performance and additional pressure on memory resources.

HTML & CSS. In the early days of the web (“Web 1.0”), the content rendered by
browsers was static in the sense that it did not change and for the most part did not
respond to user input. Web applications, which were nothing more than collections of
web pages, consisted entirely of Hypertext Markup Language (HTML) documents that
browsers used to interpret and compose text, images, and other content visible in the
browser window.

HTML documents specify the structure of a webpage by specifying the grouping
and relative layout of a set of HTML elements. The elements correspond to entities
such as the title, header, paragraphs, and images of a page. Syntactically, elements are
specified by tags given in angle brackets with tag names and attributes. For example,
the following tag corresponds to an image element that will render smiley.gif with
the specified height and width, and alternative text “Smiley face” in case the image for
some reason cannot be rendered.

Around the same time that HTML was proposed, Cascading Style Sheets (CSS) were
proposed as a clean way to separate the content of a web page from its presentation. A
CSS document specifies how the elements in an HTML document should be rendered,
including aspects of layout, sizing, font, and coloring. An HTML document associates
itself with a given CSS by specifying it in a tag. By separating content and presentation
in this way, it is possible for a single HTML document to render appropriately on mul-
tiple types of devices or in several different modes. For example, most websites today
specify different style sheets for desktop and mobile browsers to account for differences
in form factor. CSS also makes it possible for multiple HTML documents to share the
same presentation style, thus eliminating redundancy that would otherwise need to
exist in the HTML tag attributes and simplifying the process of changing aspects of
presentation.

Javascript. In 1995, the developers of Netscape wanted to add additional function-
ality to websites by allowing them to run scripts in the context of a rendered HTML
document. The original goal was to embed the Scheme programming language into
websites [Rau14], but due to a strategic collaboration with Oracle (the creators of Java)
it was decided that the language should ultimately complement Java programs and
use similar syntax. This led Brendan Eich, who Netscape had hired to develop this web
scripting language, to create the initial prototype of the JavaScript language in ten days
to preemptively defend the choice against competing proposals for other languages.

The result was a high-level interpreted language with no static typing discipline,
prototype-based support for object-oriented programming, and essentially no resemb-
lence to Java other than through its use of curly braces rather than parenthesis for lexical

15-316 LECTURE NOTES MATT FREDRIKSON

L20.8 Web Security: Application Model & Same-Origin Policy

grouping. It supports APIs for dealing with strings, arrays, dates, regular expressions,
and rendered HTML content (more on this later), but contains only limited facilities for
I/O. Although it has gone through several rounds of update and standardization, the
same JavaScript that Eich developed in his early prototype remains universal on the
web today.

JavaScript contains a number of unfortunate features that make it difficult to reason
about both for developers and for automated tools that support safety and correctness.
The most famous such feature is the eval(str) function, which takes a string argu-
ment and evaluates it as a JavaScript program. This allows programs to dynamically
compute programs and run them, which causes obvious problems for static analysis.
Another difficulty comes from JavaScripts type coercion, wherein data of a particular
type is converted to a different type automatically. Consider the following example
from Douglas Crockford [Cro08] where string, numeric, and Boolean data are coerced
behind the scenes in unpredictable ways.

’’ == ’0’ // false

0 == ’’ // true

0 == ’0’ // true

false == ’false’ // false

false == ’0’ // true

false == undefined // false

false == null // false

null == undefined // true

’ \t\r\n ’ == 0 // true

We could fill several lectures with discussion of the many terrible features that re-
main supported in JavaScript, but for our purposes it suffices to say that conventional
analysis techniques do not apply to JavaScript programs.

Document Object Model. One of the key motivations for incorporating a scripting
language into web pages is to allow scripts to update the rendered content program-
matically and in response to events such as user interaction. This is supported by the
Document Object Model (DOM), which is an API for reading and manipulating parsed
HTML content. The DOM is actually a language-independent API, but we will focus
on its implementation in JavaScript as it is the most relevant to web app security.

The DOM maintains an internal representation of an HTML document as a tree struc-
ture. Each node corresponds to an element specified in the HTML, and the root of the
tree (called the “document object”) corresponds to the top-level document containing
all of the elements. The JavaScript program running in the context of a page can make
arbitrary changes to the DOM, which the browser will then render back on the UI. By
extension, the DOM API allows JavaScript programs to register event handler callback
functions on specified elements.

This allows websites to implement dynamic content in many ways resembling tra-
ditional desktop applications. As the user interacts with rendered elements, JavaScript

15-316 LECTURE NOTES MATT FREDRIKSON

Web Security: Application Model & Same-Origin Policy L20.9

Figure 5: An example of the DOM hierarchy in a simple HTML document. Image
source: https://commons.wikimedia.org/wiki/File:DOM-model.svg.

event handlers are invoked which can in turn change the layout and visual appear-
ance of the page. The combination of these technologies—HTML, JavaScript, and the
DOM—are the essential client-side elements of modern web applications.

Same-origin policy. Because websites can execute scripts, there is the possibility that
malicious websites could use this functionality to interfere with or spy on the content
and interactions of other websites. For example, you may click on an untrusted link
at the same time that you have a website from your bank or healthcare provider open.
It would be problematic if a script running on the untrusted site were able to use the
DOM API to snoop on sensitive information displayed on either page, or worse yet,
invoke event handlers that cause requests to your bank!

To protect the secrecy and integrity of web application content and data, browsers
implement the Same-origin Policy (SOP). Roughly, the SOP requires that content loaded
in a webpage (call it “website A”) can not access data or functionality on another web-
site (“website B”) unless A and B have the same origin. An origin is defined as the
combination of the URI scheme, host name, and port number from with the site was
loaded.

Recalling the components of URLs discussed earlier, we can think of the policy as
specifying security labels in terms of triples containing (scheme, host, port) from the URI
corresponding to a page loaded in the browser. Scripts running under the label for a
particular (scheme, host, port) triple are not allowed to access the DOM content or script
state of pages running under different triples. This is a type of information flow policy
that isolates content from different sources.

15-316 LECTURE NOTES MATT FREDRIKSON

https://commons.wikimedia.org/wiki/File:DOM-model.svg

L20.10 Web Security: Application Model & Same-Origin Policy

Website Outcome
http://cs.cmu.edu/~15312 Allowed; same scheme, host, and port
https://cs.cmu.edu/~15312 Not allowed; different scheme
http://www.cs.cmu.edu/~15312 Not. allowed; different host
http://andrew:pwd@cs.cmu.edu/~15312 Allowed; same scheme, host, and port
http://cs.cmu.edu:81/~15312 Not allowed; different port
http://cs.cmu.edu:80/~15312 Depends on browser implementation

Figure 6: Example outcomes of the Same-origin Policy applied when a script on http:

//cs.cmu.edu/~15316 attempts to access the data of pages from different
URIs. In the bottom example, the scheme, host, and port all match because
the default port for http is 80. Regardless, some browsers will not allow this
because the port is made explicit in the latter but not the former.

It may help to see a few examples. Consider a script running on the page loaded from
http://cs.cmu.edu/~15316. Figure 6 shows the SOP result when the script attempts
to access the data of other websites. Note that different browser implementations may
differ slightly in their implementation of the SOP, as shown in the last example.

Cross-origin access and embedded content. Websites often consist of content from
multiple different domains. One common example is images, which are sometimes
stored on severs from different origins. Similarly, JavaScript code and CSS documents
are frequently provided as libraries and there are good performance reasons for a web-
site to use the source stored on the library vendor’s servers. Finally, frames subdivide
the browser window into segments with content loaded from possibly unrelated URIs;
this is one common way of displaying advertisements.

Although these do not necessarily have anything to do with JavaScript code or DOM
access, these forms of embedded content seem to violate the intent of the Same-origin
Policy in that they allow information to flow between different origins. For example,
when a page from origin A loads an image from origin B, information can leak from A
to B both through the simple fact that a request is being made, as well as through the
pathname of the requested image. Likewise, information can leak from B to A through
any error messages that may occur (e.g., if B returns that the content is inaccessible),
and through attributes such as the width and height of the returned image.

Regardless, embedding is typically allowed as it is considered essential to supporting
fully-functional web applications. A few case-specific details are with noting though.

• For scripts that are embedded from outside origins with a <script src=...> tag,
the code is retrieved, parsed, and then run in the context of the origin that re-
quested the script (not the origin that it was retrieved from). This supports cross-
origin third-party libraries while partially avoiding explicit cross-origin flows.
Moreover error messages are only returned for scripts from the same origin as
the embedding page.

15-316 LECTURE NOTES MATT FREDRIKSON

Web Security: Application Model & Same-Origin Policy L20.11

• Content embedded in an iframe can come from arbitrary domains, but is run in
the context of the origin that the content is loaded from. So if a webpage in origin
A embeds and iframe with an advertisement from origin B, the ad will run in
the context of B and the Same-origin Policy will apply more or less as though the
content were loaded in a separate tab.

• Images from different domains can be loaded and displayed on a webpage, but
the contents of the image itself, i.e. its pixels, cannot be read by the page loading
the image.

• Cookies use a separate definition of origins. A page can set a cookie for its own
domain or any parent domain, as long as the parent domain is not a public suffix
(there are only a small number of these). The browser will make a cookie available
to a page in the cookie’s domain, including any subdomains, no matter which
protocol or port is used. Cookies can be further scoped by setting the path, thus
limiting the pages to which the cookie is sent to be within specified path.

As you might imagine, exceptions to the SOP due to cross-origin access create subtlety
and complexity that is sometimes difficult to manage. In brief, you can understand
most of these SOP “exceptions” as being governed by the principle that the SOP limits
the ability of pages to read content from other domains, but not their ability to send data
to other domains.

2.3 Web apps on the server

We mentioned earlier that web applications are “tiered” into portions consisting of the
client side and server side. On the server tier, a common architecture divides the appli-
cation into components that are responsible for the “application logic” and data storage
separately. The application logic component takes care of network communications
with the client, doing the core work of receiving requests, computing responses, and
sending them back to the client. The data storage component is typically a traiditional
relational database backend that contains any data needed to service client requests.

For traditional “static” websites, the database may not play much of a role if HTML
documents are pre-generated and stored on the server’s filesystem. In this case, the
server just parses the URI recieved from the client and uses the path component to
locate an appropriate HTML file to send back. But it should come as no surprise that
the vast majority of web applications require more than this.

Server-side scripting. Just as client-side scripting supports dynamic content, server-
side scripting languages are commonly used to generate dynamic content to send to
the client in response to the details of a request. While on the client side JavaScript
is almost exclusively used, there is no de-facto standard server-side scripting and there
are several common approaches for dynamically generating content on this tier. Among
the most common are the Common Gateway Interface (CGI) and PHP.

15-316 LECTURE NOTES MATT FREDRIKSON

L20.12 Web Security: Application Model & Same-Origin Policy

You are already familiar with CGI from its inclusion in Lab 0. In its simplest incarna-
tion, a server that uses CGI executes a program as though it were a console command
and sends any output that it produces back to the client. The URI sent by the client for
a CGI script might look like the following:

https://retailer.com/cgi-bin/purchase?arg1=credit&arg2=5105105105105100

In this example, the URI specifies a CGI script called purchase, and provides two ar-
guments in the query portion of the URI. The first arg1 is set to the value "purchase",
and the second arg2 is set to the string "5105105105105100". It is the web server’s job
to locate an executable program mapped to the path cgi-bin/purchase, and execute it
with command-line arguments corresponding to those provided in the URI.

The CGI script itself can do whatever the permissions on the server allow. It can
perform arbitrary computations, read and write files allowed by the filesystem permis-
sions, contact a back-end database, make network requests, and so on. The point is
to generate a response to send back to the client that can be rendered by the browser.
So in most cases, the script will generate an HTML document containing information
specific to the query it received, and print it to standard output so that the web server
can send it to the client.

CGI is still used in web applications, but it is much more common to implement dy-
namic server-side functionality in a language like PHP. PHP in some ways simplifies
the dynamic creation of HTML by allowing developers to write a template HTML doc-
ument with portions that contain embedded PHP code. When the client requests a PHP
file, the web server invokes the PHP interpreter passing the client’s arguments, and the
embedded PHP elements are evaluated into strings within the HTML template. The
end result is an HTML document corresponding to the original template, with specific
portions having content that was dynamically computed based on the client’s request.

Figure 7 shows an example PHP script and the HTML document that it produces
when requested with a particular argument. Notice that the script is embedded within
an HTML document (i.e., template). The PHP interpreter runs each embedded script
with the arguments given in the request, and whatever output the script produces is
placed in the same location within the template as the script itself.

References

[BRJI08] Adam Barth, Charles Reis, Collin Jackson, and Google Chrome
Team Google Inc. The security architecture of the Chromium browser,
January 2008. URL: http://seclab.stanford.edu/websec/chromium/

chromium-security-architecture.pdf.
[Cro08] Douglas Crockford. Appendix B: The Bad Parts. In JavaScript: The Good Parts.

O’Reilly Media, Inc., 2008.
[Rau14] Axel Rauschmayer. Speaking JavaScript. O’Reilly Media, Inc., 1st edition, 2014.

15-316 LECTURE NOTES MATT FREDRIKSON

http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

Web Security: Application Model & Same-Origin Policy L20.13

<!DOCTYPE html >

<html >

<body >

<?php

echo ’<p>Hello , $_GET ["name"]</p>’;

?>

</body >

</html >

<!DOCTYPE html>

<html>

<body>

<p>Hello , Andrew </p>

</body>

</html>

Figure 7: Example PHP script (top) that emits an HTML document (bottom) with a <p>

element that is dynamically-computed from the name argument provided in
the URI http://ex.com/test.php?name=Andrew.

15-316 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Web Applications
	Hyptertext Transfer Protocol
	Web apps on the client
	Web apps on the server

