
Assignment 2: Semantically Safe
15-316 Software Foundations of Security and Privacy

Due: 11:59pm, Sunday 9/29/18
Total Points: 50

1. Safe superdiversity (10 points). The so-called “monoculture problem” of software security refers
to the fact that when a large set of users runs bytecode-identical versions of the same application,
then any vulnerability affecting that application will have dramatic impact as it applies to the whole
population. In response to this, engineers looked for ways to diversify software by distributing different
versions of the same application, each with a unique bytecode representation.
One example of this is a technique called “superdiversification”, proposed by researchers from Nokia
and Microsoft in 2008. The technique is applied by a compiler when generating an executable, and
performs a brute-force search of all short instruction sequences to look for semantically-equivalent
machine code implementations for desired functions.
It’s probably not wise to dopt this crazy-sounding technique without convincing evidence that the
implementations it produces are in fact equivalent to the original code you wrote. If this were not
the case, your application might end up with arbitrary behaviors, potentially leading to even more
vulnerabilities than would otherwise be present. Luckily, you are familiar with dynamic logic, and are
able to rigorously prove that such implementations are correct.
Prove that the following code negates y and stores it in x. In other words, write a specification by
giving a precondition A and postcondition B that captures this functionality, and then use the axioms
of dynamic logic to show that the following formula is valid.

x :“ x ´ y; y :“ y ` x;x :“ x ´ y

Solution.

2. Once and for all (10 pionts). Having completed the previous exercise, there is an obvious problem
when it comes to using this approach in practice. Even if we have a tool to do the proofs for us,
it’s going to be too much work to write down a brand new specification for the safety of each and
every transformation that the system decides to use. Your goal in this problem is to write a single
specification, as a dynamic logic formula, that covers all of our concerns for superdiversity.

• You should assume that the original code fragment is represented by α, and the super-diversified
replacement by β.

• You may assume that the only variables that both α and β use are x and y.
• Your specification should capture the fact that α and β must be equivalent in terms of their

input-output behavior with respect to x and y. In other words, if they are executed in states that
agree on the values of x and y, then when they terminate, they will agree on (potentially new)
values of x and y.

• If it helps you answer the question, you may assume that α and β always terminate. If your
answer requires this assumption, then you must state it and explain why.

• Likewise, if it helps, you may assume that α and β are programs in the language discussed in
lecture. If your answer does not use this assumption, then be sure to say so and explain!

In addition to providing a dynamic logic formula that meets these requirements, determine whether
this formula corresponds to a safety property. If so, explain why by identifying the finite prefixes
according to Definition 11 in the “Semantics, Safety, & Dynamic Logic” lecture notes. If not, provide
a concise explanation why.
Solution.

3. Nondeterministically Satisfied (20 points).
Now that we know how to reason about programs using logic, perhaps there are interesting ways to
use logic directly in a program to make life easier. One example would be the “assign such that”
statement, which would let us update a variable to take some nondeterministically-chosen value such
that it satisfies a given condition. An example of this might look like the following, where x is assigned
some arbitrary value between 0 and 15,316:

x :=? 0 ď x ^ x ď 15316

Aside from being useful for writing provably-correct code, this construct could maybe even help us
generate good random passwords that satisfy those annoying character class requirements...

(a) Define the a formal semantics for this command. That is, define the following set of traces
assuming that ppxq is a formula with a free occurrence of the variable x:

Jx :=? ppxqK “ tpω, νq : . . .u

(b) Then, give an axiom that enables compositional reasoning about programs that make use of the
command.

rx :=? ppxqsqpxq Ø . . .

The right-hand side that you fill in for this axiom should contain no box or diamond modalities.
(c) Finally, be sure to relate the axiom to your semantics by proving that it is sound.

4. On second thought... (10 points). Sometimes adding new features to a language can be more
trouble than they’re worth. In the lecture notes, we somewhat casually concluded that the following
two contracts for a given program were equivalent.

rαsA ^ rαsB

rαspA ^ Bq

For the language we’ve discussed in lecture the same holds for disjunction, so:

(rαsA _ rαsB Ø rαspA _ Bq

Now that α might contain an “assign such-that” command, is this still the case?

• If so, then prove that (rx :=? ppxqspA _ Bq Ø rx :=? ppxqsA _ rx :=? ppxqsB.
• If not, then give an example of a program α that makes use of “assign such-that”, and a postcon-

dition A _ B such that rαspA _ Bq is not equivalent to rαsA _ rαsB.

