
Assignment 3: The Memory Sandbox
15-316 Software Foundations of Security and Privacy

Total Points: 50

1. Practice makes perfect (10 points). Use the read-over-write axioms to prove the validity of the
following using a sequent calculus deduction:

0 ď k ă U, j ‰ k, i “ j $ Memti ÞÑ eutj ÞÑ fupkq “ g Ñ Mempkq “ g

Solution.



2. Unfinished business (10 points). In lecture 7, we discussed two cases of the structural induction
used to prove the security of SFI. Complete the inductive case for while commands. That is, assuming
that Equation 1 is valid for α whenever 0 ď sl ď px & shq | sl ď bh ă U :

@i. psl ď i ď shq ^ Mempiq “ vi Ñ rαsMempiq “ vi (1)

Prove that it is also valid for ifpQqα elseβ.

Solution.



3. Leaky sandbox (30 points). Consider the following language, which resembles a simplified assembly
language.

andpx, yq Take the bitwise-and of variables x and y, store the result in x
orpx, yq Take the bitwise-or of variables x and y, store the result in x
x :“ c Copy a constant c into variable x
x :“ y Copy the value stored in y to x
x :“ Mempyq Read the memory at address stored in variable y, save result in x
Mempxq :“ y Store the value in y at the address pointed to by x
ifpQq jumpx If Q is true in the current state, jump to the instruction pointed to by x

Programs in this language are sequences of instructions indexed on integers 0 to n, and we refer to the
instruction at index i of program α with the notation αi. Note that there are no expressions other than
constants and variables in this language. Instead, results of operations are stored in variables, and can
be moved into memory when necessary. Think of variables as acting like registers, so to implement the
computation w :“ px & yq | z from our language in lecture we would write the program:

1 : andpx, yq
2 : orpx, zq
3 : w :“ x

It is not possible to write w :“ orpandpx, yq, zq because neither orpandpx, yq, zq or andpx, yq is a variable,
and updates to variables can only be written with other variables, constants, or memory reads on the
right hand side.

Note that just as you should assume that any memory reads outside the bounds of r0, Uq will result
in an aborted trace, you should assume that any attempt to jump to an address outside the bounds of
r0, Nq, where N is the number of instructions in α, will also abort the trace.

Part 1 (15 points). We want to implement a sandboxing policy for this language using software fault
isolation. So the proposal is to replace all memory read and write operations as follows. Assume that
sl “ 0x15316000 and sh “ 0x15316fff, so the memory sandbox is contained in the range of addresses
0x15316000´ 0x15316fff.

x :“ Mempyq becomes
andpy, 0x15316fffq
orpy, 0x15316000q
x :“ Mempyq

Mempxq :“ y becomes
andpx, 0x15316fffq
orpx, 0x15316000q
Mempxq :“ y

Additionally, we want to prevent jumps from leaving a code sandbox restricted to the range of instruc-
tion addresses 0x00000a00´ 0x00000aff. So each indirect jump is rewritten as follows.

ifpQq jumpx becomes
andpx, 0x00000affq
orpx, 0x00000a00q
ifpQq jumpx

Any untrusted code is rewritten using these rules prior to being executed. Unfortunately, we didn’t
have time to prove that this implementation of SFI is secure.



Explain why this instrumentation is vulnerable to memory reads and writes outside the
memory sandbox, and provide an example program in the language that exploits violates
the policy. For full credit, be sure to explain in words how your example results in a violation of the
sandbox policy.

Solution.



Part 2 (15 points). Propose an alternative implementation in this language for the policy
in Part 1 that is secure. You may assume that the untrusted code is not allowed to modify some
variables that you select, but be sure to clearly state this and any other assumptions that your solution
requires.

Solution.


