
Assignment 4: The Highs and Lows of Information Flow
15-316 Software Foundations of Security and Privacy

Total Points: 50

1. Flow through abort (15 points).

The definition of non-interference described in lecture (Eq. 1) does not account for aborted executions.

@ω1, ω2.ω1 «Γ,L ω2 ^ xω1, αy óω
1
1 ^ xω2, αy óω

1
2 Ñ ω11 «Γ,L ω

1
2 (1)

In particular, consider the following program under the policy Γ “ px : Hq:

assert(x > 0)

If our threat model allows an attacker to detect whether a trace of this program aborts, then the
attacker can learn information about the value of x by observing whether the final state is Λ or not.

Part 1 (10 points). First, provide a big-step semantics for the assertpQq command; your semantics
should match the trace semantics for assert given in prior lectures, in the sense that:

xω, assertpQqy ó ν if and only if pω, νq P JassertpQqK

Then, explain how to modify the definition of «Γ,L and Equation (1) to arrive at “failure-sensitive
non-interference”, which characterizes programs that do not leak information about H variables either
through the L variables in initial and final states, or whether the final state is Λ or not.



Part 2 (10 points). Design a typing rule for assertpQq commands, and prove its soundness. In
other words, prove that if Γ $ assertpQq, then assertpQq satisfies your definition of failure-sensitive
non-interference under Γ. Then, discuss whether any of the typing rules discussed in lecture and the
notes need to be changed to enforce failure-sensitive non-interference, and how the soundness argument
for the entire system (including your new rule) would need to be changed.



2. Leveraging interference (10 points).

Consider the following program, under the type context Γ “ pa : H, b : L, c : Lq.

if(a < 0) {

if(b < a) c := 0

else c := 1

} else {

if(a < b) c := 0

else c := 1

}

Describe a procedure that leverages the fact that this program does not satisfy non-interference under
Γ to learn the value of the H-typed variable. You can make use of the following assumptions.

• Assume that an attacker can control the values of L-typed variables prior to executing the program,
and observe their value afterwards. They can neither control nor observe H variables at any point.

• ´N ď a ď N for some constant N . State whether your procedure requires that the attacker know
N in order to run it.

• Finally, the attacker can run the program with different L inputs any number of times, and the H

input will remain the same.

How many times does the attacker need to run the program using your procedure to learn a?



3. Flow types (20 points).

Consider the following program.

if(a = b) {

d := c ˆ e;

e := 0

} else {

c := 0;

d := d + 1

}

b := c ˆ e

Part 1 (10 points). List the information flow constraints required for this program to typecheck
under a policy Γ, assuming that H Ď Γpaq (i.e., this must be one of your constraints). For example, if
we were to list out the constraints for the program x :“ y; z :“ x, they would be:

Γpyq Ď Γpxq,Γppcq Ď Γpxq,Γpxq Ď Γpzq,Γppcq Ď Γpzq

Note that to make the notation less burdensome, it would be fine and perfectly understandable to
write the following instead:

y Ď x, pc Ď x, x Ď z, pc Ď z

In other words, y must flow to x, x must flow to z, and pc must flow to both x and z. These constraints
follow because the rule for typechecking x :“ y requires that Γpyq \ Γppcq Ď Γpxq, and the rule for
type-checking z :“ x requires that Γpxq \ Γppcq Ď Γpzq.

Then, identify a minimal policy Γ˚ under which this program α typechecks, and which satisfies the
constraints you provided above. Here, minimal means that for any policy Γ that satisfies the constraints
where Γ $ α, and any variable x, Γ˚pxq Ď Γpxq.



Part 2 (10 points). The policy that you wrote for Part 1, being a minimal policy that satisfies the
constraints implied by H Ď Γpaq, is the most permissive policy which ensures that the contenta of a
remain confidential under enforcement by typechecking. However, because the type system discussed
in lecture is sound but not complete, it may err on the side of requiring that more variables be typed
H than are truly necessary for noninterference to hold.

Show that the minimal policy you provided in Part 1 is conservative by identifying at least one variable
which is typed H, but cannot be influenced by a. Then, use self-composition to construct a dynamic
logic formula whose validity implies that this program satisfies noninterference under a policy Γ1, which
is identical to your Γ˚ except that the identified variable is labeled L instead of H. Your formula may
use α to refer to the program listed at the beginning of this problem, and α1 to refer to its “primed”
version where each variable x is replaced with x1.



Extra credit (5 points). Rewrite the program given at the beginning of this problem so that it
can be typechecked by a policy Γ that assigns Γpaq “ H and Γp¨q “ L, where ¨ is the variable that you
identified in Part 2. The re-written program should be semantically equivalent to the original. For
credit, you must use the typing rules to show that Γ $ α1, where α1 is your re-written solution.


