
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Semantics, Safety, & Dynamic Logic

Matt Fredrikson

Carnegie Mellon University
Lecture 3

1 Introduction
This lecture will advance to reasoning about program behavior, using what we learned
about the sequent calculus and formal proof as our logical foundation for doing so. We
will focus on a class of behaviors called safety properties, which can be broadly under-
stood as specifying behaviors in which “something bad” never happens. To formalize
particular instances of “something bad”, we will build on what we already know about
contracts. In particular, the bad thing characterized by our safety properties will be
contract violations.

To make our study of safety properties concrete, we will fix a simple imperative core
language with such familiar constructs as assignments, conditionals (i.e., if-then-else),
sequential composition (i.e., semicolon), and while loops. This will be sufficient to illus-
trate the key ideas, and in future lectures we will add features to the language as needed
when we discuss various kinds of security policies.

Our understanding of this language and its safety properties will be grounded in first-
order dynamic logic [Pra76, HKT00], which will provide a set of axioms to use in sequent
calculus proofs of program behavior. Dynamic logic has been used for many program-
ming languages [Koz85, Pel87, DRS+93], and is the basis for a number of automated
program verification tools [BP06, Pla08, ABB+16, Pla17]. In the following lectures, we
will see how to use it to ensure properties like memory safety, access control, and other
security-related properties that can be formalized in terms of safety.

https://15316-cmu.github.io/index.html

L3.2 Semantics, Safety, & Dynamic Logic

2 Review
In the last lecture, we introduced propositional logic by giving its syntax and semantics.
Recall that all of the “variables” (i.e., atomic propositions denoted by lower-case letters)
represent true/false statements, and the semantics is given in terms of an interpretation
I that maps atomic propositions to either true (true) or false (false) values.

Definition 1 (Syntax of propositional logic). The formulas F,G of propositional logic are
defined by the following grammar (where p is an atomic proposition):

F ::= ⊥ | ⊤ | p | ¬F | F ∧G | F ∨G | F → G | F ↔ G

Definition 2 (Semantics of propositional logic). The propositional formula F is true in
interpretation I, written I |= F , as inductively defined by distinguishing the shape of
formula F :

1. I ̸|= ⊥, i.e., ⊥ is true in no interpretations

2. I |= ⊤, i.e., ⊤ is true in all interpretations

3. I |= p iff I(p) = ⊤ for atomic propositions p

4. I |= F ∧G iff I |= F and I |= G.

5. I |= F ∨G iff I |= F or I |= G.

6. I |= ¬F iff I ̸|= F , i.e. it is not the case that I |= F .

7. I |= F → G iff I ̸|= F or I |= G.

8. I |= F ↔ G iff both are either true or both false.

We then learned about the propositional sequent calculus, a deductive system for
proving the validity of propositional formulas. The sequent calculus is comprised of com-
positional proof rules, and is sound and complete. In other words, by combining sequent
calculus proof rules, it is possible to construct a proof for any valid formula (complete-
ness), and it is only possible to construct such a proof for valid formulas (soundness).
This property follows from the soundness of the individual proof rules, which holds if
and only if the validity of all premises in the rule implies the validity of its conclusion.

Definition 3 (Soundness of a proof rule). A sequent calculus proof rule

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is sound iff the validity of all premises implies the validity of the conclusion:

if � (Γ1 ⊢ ∆1) and . . . and � (Γn ⊢ ∆n) then � (Γ ⊢ ∆)

15-316 Lecture Notes Matt Fredrikson

Semantics, Safety, & Dynamic Logic L3.3

3 Programs
The first thing we do for the sake of concreteness is to fix the programming language as an
imperative core while-programming language with assignments, conditional execution,
and while loops.

Definition 4 (Program). Deterministic while programs are defined by the following gram-
mar (α, β are programs, x is a variable, e is a term, and Q is a Boolean formula of
arithmetic):

α, β ::= x := e | assert(Q) | if(Q)α elseβ | α;β | while(Q)α

Of course, imperative programming languages have other control structures, too, but
in many cases they are not essential because they can be defined out of these. For
example, a repeat-until loop can easily be defined in terms of the while-loop, and a
switch statement can be defined in terms of nested conditionals. Likewise, real imperative
languages that you have used in the past have more variation on the data types that are
supported. Today we start very easily just with a single data type, and assume that all
variables hold integer values.

As terms e we use addition and multiplication (but subtraction would be fine to add).

Definition 5 (Terms). Terms are defined by the following grammar (e, ẽ are terms, x is
a variable, c is a number literal such as 7):

e, ẽ ::= x | c | e+ ẽ | e · ẽ

Some applications need further arithmetic operators on terms such as subtraction e−ẽ,
integer division e ÷ ẽ provided ẽ ̸= 0, and integer remainder e mod ẽ provided ẽ ̸= 0.
Subtraction e− ẽ for example is already expressible as e+ (−1) · ẽ.

Definition 6 (Arithmetic Formulas). Arithmetic formulas P,Q are defined by the fol-
lowing grammar (e, ẽ are terms, true, false are literals corresponding to true and false,
respectively):

P,Q ::= true | false | e = ẽ | e ≤ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q

We now know everything that we need to write programs in our simple imperative
core language. As we did in the last lecture with propositional logic, we’ll continue by
defining semantics that tell us what the syntax means.

3.1 Semantics of terms and formulas
Recall from the previous lecture that we defined the semantics of propositional logic to
assign values of either true or false to formulas, given an interpretation I that maps all the
atomic propositions (i.e., variables) to true/false values. Our intuition about programs
tells us that they do not map to true/false values, but rather execute to change the state
of a machine until they (hopefully) terminate. For example, a program consisting of

15-316 Lecture Notes Matt Fredrikson

L3.4 Semantics, Safety, & Dynamic Logic

the assignment x := x+ 1 will move from an initial state ω to a new state ν that has a
different value for the variable x, namely exactly such that ν(x) = ω + 1 while no other
variables change their value.

We formalize a program state ω as a function assigning an integer value in Z to every
variable. The set of all states is denoted S. In addition, we will assume that S contains
a special error state Λ. For example, a program might end up in the error state after
attempting to divide by zero (in case our language supports division), or after executing
a failed assertion command. The special state Λ does not map values for any variables,
so no terms can be evaluated in it and no program can continue executing from Λ.

The value that a term e has in a state ω is written ω[[e]] and defined by simply
evaluating when using the concrete (integer) values that the state ω provides for all the
variables in term e.

Definition 7 (Semantics of terms). The semantics of a term e in a state ω ∈ S is its value
ω[[e]]. It is defined inductively by distinguishing the shape of term e as follows:

• ω[[x]] = ω(x) for variable x

• ω[[c]] = c for number literals c

• ω[[e⊙ ẽ]] = ω[[e]]⊙ ω[[ẽ]], where ⊙ ∈ {+,×}

Note that if ω = Λ then the state does not map any variables to values, and there is no
way to evaluate a term. So if ω = Λ then ω[[e]] is undefined.

The arithmetic formulas used in our programming language are distinct from proposi-
tional logic in an important way. Namely, rather than containing propositional variables
their variables correspond to integer values. Otherwise we define the semantics of arith-
metic formulas just as we did for propositional formulas, by enumerating rules for the
relation ω |= P that evaluate formulas to either true or false.

Definition 8 (Semantics of arithmetic formulas). The DL formula P is true in state ω,
written ω |= P , as inductively defined by distinguishing the shape of formula P :

1. ω ̸|= ⊥, i.e., ⊥ is true in no states

2. ω |= ⊤, i.e., ⊤ is true in all states

3. ω |= e = ẽ iff ω[[e]] = ω[[ẽ]]

4. ω |= e ≤ ẽ iff ω[[e]] ≤ ω[[ẽ]]

5. ω |= P ∧Q iff ω |= P and ω |= Q.

6. ω |= P ∨Q iff ω |= P or ω |= Q.

7. ω |= ¬P iff ω ̸|= P , i.e. it is not the case that ω |= P .

8. ω |= P → Q iff ω ̸|= P or ω |= Q.

15-316 Lecture Notes Matt Fredrikson

Semantics, Safety, & Dynamic Logic L3.5

9. ω |= P ↔ Q iff both are true or both false, i.e., it is either the case that both
ω |= P and ω |= Q or it is the case that ω ̸|= P and ω ̸|= Q.

Note that if ω = Λ then the state does not map any variables to values, and there is no
way to evaluate terms to integer values, and thus no way to evaluate the predicates ≤
and =. So as in the case of terms, if ω = Λ then ω |= P is undefined.

3.2 Program semantics
The semantics of a program is comprised of the set of traces generated by running the
program starting in any initial state ω. To fully appreciate what this means, we first
need some background on what a trace is.

A trace σ is either a finite sequence of states (σ0, σ1, . . . , σn) of some length n ∈ N, or
an infinite sequence of states, one for each natural number: (σ0, σ1, σ2, . . .). We say that
a trace terminates if and only if it is finite, and its last state is not the error state Λ. If
a trace is finite and its last state is Λ, we say that it aborts. Otherwise, we say that the
trace diverges if it is infinite.

Definition 9 (Trace semantics of programs). The trace semantics [[α]] of a program α is
the set of all its possible traces and is defined inductively as follows:

1. [[x := e]] = {(ω, ν) : ν = ω except that ν(x) = ω[[e]] for ω ∈ S}
The final state ν is identical to the initial state ω except in its interpretation of
the variable x, which is changed to the value that e has in initial state ω.

2. [[assert(Q)]] = {(ω, ω) : ω |= Q} ∪ {(ω,Λ) : ω ̸|= Q}
The assert stays in its state ω if formula Q holds in ω, otherwise the final state is
the error state Λ.

3. [[if(Q)α elseβ]] = {σ ∈ [[α]] : σ0 |= Q} ∪ {σ ∈ [[β]] : σ0 ̸|= Q}
The if(Q)α elseβ program runs α if Q is true in the initial state and otherwise
runs β.

4. [[α;β]] = {σ ◦ ς : σ ∈ [[α]] , ς ∈ [[β]]};
the composition of σ = (σ0, σ1, σ2, . . .) and ς = (ς0, ς1, ς2, . . .) is

σ ◦ ς :=

{
(σ0, . . . , σn, ς1, ς2, . . .) if α terminates in σn and σn = ς0

σ if α does not terminate

The relation [[α;β]] is the composition of traces from [[β]] after those from [[α]]
and can, thus, follow any transition of α through any intermediate state µ to a
transition of β.

5. [[while(Q)α]] ={σ(0) ◦σ(1) ◦ · · · ◦σ(n) : for some n ≥ 0 such that for all 0 ≤ i ≤ n:
1⃝ the loop condition is true σ

(i)
0 |= Q and 2⃝ σ(i) ∈ [[α]] and 3⃝ σ(n) is either infinite

or, if finite, ends with σ
(n)
m and σ

(n)
m ̸|= Q

}

15-316 Lecture Notes Matt Fredrikson

L3.6 Semantics, Safety, & Dynamic Logic

∪ {σ(0) ◦ σ(1) ◦ σ(2) ◦ . . . : for all i ∈ N: 1⃝ σ
(i)
0 |= Q and 2⃝ σ(i) ∈ [[α]]}

∪ {(ω, ω) : ω ̸|= Q}
That is, the loop either runs a nonzero finite number of times with the last iteration
either terminating or running forever, or the loop itself repeats infinitely often and
never stops, or the loop does not even run a single time.

4 Safety properties
Now that we have defined the semantics of programs in terms of their traces, we are in a
better position to understand safety properties. Intuitively, safety properties characterize
programs in which “something bad” never happens. Which “bad thing” we care about
is precisely what a policy is meant to express. A few examples of safety properties that
you may already be familiar with are:

• Memory safety refers to a class of safety properties that characterize appropriate
use of memory resources by software. One aspect of memory safety in C programs
has to do with making sure that each time an array is accessed, the index is within
the bounds of 0 and the allocated length of the array. In this case the “bad thing”
that must never happen is the program accessing an array outside of its allocated
bounds.

• Mutual exclusion has to do with using a shared resource, and characterizes behav-
iors in which two processes never access the shared resource at the same time. In
other words the “bad thing” that defines safety property is the event in which two
processes simultaneously access their shared resource.

• Access control policies correspond to safety properties. A typical access control
policy defines a set of principals who make use of the system, a set of resources
that need protection, and a list of rules that define which principals may use which
resources. The corresponding safety property is based on the “bad thing” which is
that someone accesses a resource not allowed by the policy rules.

Each of the properties listed above is an example of an invariant, which is an important
class of safety properties. Invariants require that some condition P holds in all reachable
states of the program.

Definition 10 (Invariant property). An invariant property Φ characterizes a set of traces
where some formula P holds in every state of every trace.

Φ = {σ ∈ Traces(S) : there does not exist i where σi ̸|= P}

The formula P is called an invariant condition of Φ.

Invariants are not the only type of safety property, and are not the only useful kind
of safety property for defining security policies. Consider a basic user login module,
which requires that users enter the correct password before proceeding with any further

15-316 Lecture Notes Matt Fredrikson

Semantics, Safety, & Dynamic Logic L3.7

operations. This requirement is not an invariant, because it cannot be expressed in
terms of a formula that must hold over every state in the module’s execution traces. It
is however a safety property because it can be characterized by the “bad event” of a user
proceeding past login without entering the correct password.

In general, we can formalize any safety property by defining a set of prefixes such that
if a trace ever starts out with such a prefix, then it can never satisfy the corresponding
safety property regardless of what corrective steps it might attempt to make. Thinking
of our examples from before, if a program ever lets someone execute a command without
providing a correct password, then safety has been violated because it has a trace that
starts out by allowing the bad thing to happen.

Definition 11 (Safety property). A set of traces Φ is a safety property if for all traces
σ ∈ Traces(S) \ Φ, there exists a finite prefix σ̂ of σ such that:

Φ ∩ {σ′ ∈ Traces(S) : σ̂ is a prefix of σ′} = ∅

In other words, we can think of a safety property as an enumeration of every possible
trace that does not begin with one of the bad prefixes that we wish to avoid; every trace
not in Φ has some bad prefix σ̂ that is not shared by any trace in Φ. This means that
properties do not necessarily apply to any particular program, and a safety property may
contain traces from many programs. Given an arbitrary program α and property Φ, it
then makes sense to ask whether α satisfies Φ. We answer this question by determining
whether the set of traces in the semantics of α is a subset of those that define Φ; if so,
then the program satisfies the property, and otherwise it does not.

Definition 12 (Trace property satisfaction). A program α satisfies a trace property Φ if
and only if [[α]] ⊆ Φ. In other words, if all of the behaviors of α are explicitly allowed by
the property, then α satisfies Φ.

We will now go into further detail on two types of safety properties that are especially
useful when reasoning about programs written in our core language.

4.1 Assertions and aborted execution
One of the commands in our language is assert(P), where P is some arithmetic formula
over the program variables. An assertion effects no change on the program state if the
formula evaluates to true, and otherwise aborts the program by transitioning to Λ. In
the latter case, the program is said to violate the assertion.

We can define a safety property ΦΛ that characterizes all programs that never violate
their assertions by the set of bad prefixes Φ̂Λ shown in Equation 1.

Φ̂Λ = {σ̂ ∈ Traces(S) : σ̂ is finite and the final state σ̂n = Λ} (1)

In words, the bad prefixes characterized by Equation 1 comprise all aborted traces, i.e.,
those that end in the error state Λ. Then the safety property ΦΛ is the set of all traces
that never abort after a finite number of steps.

ΦΛ = {σ ∈ Traces(S) : σ does not begin with any σ̂ ∈ Φ̂Λ} (2)

15-316 Lecture Notes Matt Fredrikson

L3.8 Semantics, Safety, & Dynamic Logic

ΦΛ is a tremendously useful property because it captures unwanted behavior that may
arise from a broad set of erroneous and insecure program behaviors. It also allows us as
programmers to use the assert(P) syntax to specify what we intend for the policy to
be, and then if we have a way of checking whether our program satisfies ΦΛ, we can use
it to check our policy.

4.2 Program contracts
Going back to 15-122, program contracts given by @requires and @ensures clauses also
define safety properties. In the previous lecture, we looked at a binary multiplication
function annotated with the following C0 contract.

//@requires b >= 0;
//@ensures \result = a*b

The meaning of this contract is that whenever the function begins executing with b ≥ 0,
then when it finishes the return value will hold the value a ·b. Our core language doesn’t
have functions or procedures yet, so from now on we will view contracts as applying to
the execution of the entire program. In other words, @requires clauses hold at the very
beginning of execution, and @ensures apply to the program state upon termination (if
the program actually terminates). The language also doesn’t have a return command,
or any variable designated to hold results, so we’ll state the postcondition in terms of
the variable used to store the result prior to returning. The contract will be:

//@requires b >= 0;
//@ensures z = a*b

Why is this a safety property? Think about the contract’s meaning in terms of bad
prefixes. A bad prefix for this contract would be a finite trace σ whose initial state
σ0 |= b ≥ 0, and whose final state σn ̸|= z = a · b. Alternatively, a bad prefix could be
one where σ0 |= b ≥ 0 and the final state σn = Λ.

In general, we can formalize the safety property corresponding to a contract given by
@requires P and @ensures Q as shown in Equation 3.

Φ = {σ ∈ Traces(S) : σ is finite of length n, σ0 |= P, and σn |= Q} (3)

Notice that Equation 3 does not make any mention of the error state, although our
description of the bad prefixes did. Consideration of Λ in this case is already taken care
of by the way we defined the semantics of arithmetic formulas. If σn = Λ, then it is not
the case that σn |= Q because |= is not defined on the error state.

5 Reasoning about safety properties and programs
We continue in our study of safety properties now by considering a way of determining
whether a given program satisfies a property. We won’t tackle the whole problem of
verifying arbitrary safety properties yet, and will instead focus on an approach that

15-316 Lecture Notes Matt Fredrikson

Semantics, Safety, & Dynamic Logic L3.9

works well for contracts. Along the way, we will discover tools that will help us with
different types of safety properties later on.

Given one particular value for each of the variables, the arithmetic formulas that define
a contract are either true or false (much like, in an interpretation I, propositional logic
formulas are either true or false). Looking at Equation 3, we see that the values used
to evaluate the precondition P are taken from the initial state σ0, and those used to
evaluate the postcondition Q from the final state σn. In this sense the logic used to
define the pre- and postconditions is static, or fixed according to the values in a single
state or interpretation.

Why is this problematic? Consider a situation where the precondition evaluates to
true in the initial state, but becomes false in the final state. If the logic that we use to
reason about whether the states generated by a program gives us no way of referring to
what was true at the beginning, and what will be true at the end of a trace, then how
can we possibly figure out that this trace violates the contract? Contracts deal with
the dynamics of state as programs make changes to variables, and we need a logical
formalism that can do so as well.

Dynamic logic provides modalities that talk about what is true after a program runs.
The modal formula [α]P expresses that the formula P is true after all terminating runs
of program α. That is, the formula [α]P is true in a state ω if it is indeed the case that
all states ν reached after running program α starting in ω satisfy the postcondition P .
As we will see, we can use dynamic logic to rigorously express what contracts mean, as
well as to reason about them by way of sequent calculus proofs. But let’s first officially
introduce the language of dynamic logic.

5.1 Dynamic Logic
Definition 13 (DL formula). The formulas of dynamic logic (DL) are defined by the
grammar (where P,Q are DL formulas, e, ẽ terms, x is a variable, α a program):

P,Q ::= e = ẽ | e ≤ ẽ | ¬P | P ∧Q | P ∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α]P | ⟨α⟩P

The propositional connectives such as ∧,∨, . . . and predicates ≤,= mean what they
already mean in Definition 8, and terms e, ẽ are constructed exactly as in Definition 5.
The universal quantifier in ∀xP and the existential quantifier in ∃xP quantify over all
(in the case of ∀), or over some (in the case of ∃) value of the variable x. But it will
be quite important to settle on the domain of values that both quantifiers range over.
In most of our applications, this will be the set of integers Z, but other domains are of
interest, too.

Most importantly, and indeed the defining characteristic of dynamic logic, are the box
modality in [α]P and the diamond modality in ⟨α⟩P . The modal formula [α]P is true
in a state iff the final states of all runs of program α beginning in that final state satisfy
the postcondition P . Likewise the modal formula ⟨α⟩P is true in a state iff there is a
final state for at least one run of program α beginning in that final state that satisfies
the postcondition P . So [α]P expresses that P is true after all terminating runs of α

15-316 Lecture Notes Matt Fredrikson

L3.10 Semantics, Safety, & Dynamic Logic

whereas ⟨α⟩P expresses that P is true after at least one run of α. We will focus almost
exclusively on the box modality.

5.2 Contracts in Dynamic Logic
Since the box modality in [α]P expresses that formula P holds after all runs of program
α, we can use it directly to express @ensures postconditions. Let bmult be the binary
multiplication program from the previous lecture, pre and post be the pre and post-
conditions.

bmult ≡ x := a; y := b; z := 0; while(y > 0) {if(y%2 = 1) {z := z + x}x := 2 ∗ x; y := y ÷ 2}
pre ≡ b ≥ 0

post ≡ z = a · b

With these abbreviations and the box modalities of dynamic logic it suddenly is a piece
of cake to express the @ensures postcondition holds after all program runs:

[bmult]post

Suppose that we had a second postcondition post2 ≡ y ≤ b. Well, if we want to say
that both postconditions are true after running bmult and the logic is closed under all
operators including conjunction, we can simply use the conjunction of both formulas for
the job:

[bmult]post ∧ [bmult]post2

This formula means that post is true after all runs of bmult and that post2 is also true
after all runs of bmult. Maybe it would have been better to simultaneously state both
postconditions at once? That is simply the formula

[bmult](post ∧ post2)

which says that the conjunction of post and post2 is true after all runs of bmult. Which
formula is better now?

Well that depends. For one thing, both are perfectly equivalent, because that is what
it means for a formula to be true after all runs of a program. That means the following
biimplication in dynamic logic is valid so true in all states:

[bmult]post ∧ [bmult]post2 ↔ [bmult](post ∧ post2)

Now that we have worried so much about how to state the postcondition in a lot of
different equivalent ways, the question is whether the following formula or any of its
equivalent forms is actually always true?

[bmult](post ∧ post2)

The answer is of course “no”, because we forgot to take the program’s precondition from
the @requires clause into account, which the program assumes to hold in the initial

15-316 Lecture Notes Matt Fredrikson

Semantics, Safety, & Dynamic Logic L3.11

state. But that is really easy in logic because we can simply use implication for the job
of expressing such an assumption:

pre → [bmult](post ∧ post2)

And, indeed, this formula will now turn out to be valid, so true in all states. In par-
ticular, in every initial state it is true that if that initial state satisfies the @requires
preconditions b ≥ 0, then all states reached after running the gcd program will satisfy
the @ensures postconditions post ∧ post2. If the initial state does not satisfy the pre-
condition, then the implication does not claim anything, because it makes an assumption
about the initial state that apparently is not presently met.

6 Next lecture
In this lecture we formalized safety properties in terms of the semantics of programs
in our core language. We then zoomed in on one particular kind of safety property
corresponding to program contracts, and saw how to make their meaning precise using
dynamic logic. This is nice, but we didn’t go to all the trouble of introducing (another)
new logic just to write contracts down in a different way. In the next lecture, we will study
several useful axioms of dynamic logic, and see how to use them in sequent calculus proofs
of program safety. This will lay the groundwork for understanding how two important
automated safety verification techniques, called bounded model checking and symbolic
execution, work to identify safety vulnerabilities in real code.

References
[ABB+16] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Pe-

ter H. Schmitt, and Matthias Ulbrich, editors. Deductive Software Verifica-
tion – The KeY Book, volume 10001 of LNCS. Springer, 2016.

[BP06] Bernhard Beckert and André Platzer. Dynamic logic with non-rigid functions:
A basis for object-oriented program verification. In IJCAR, pages 266–280,
2006. doi:10.1007/11814771_23.

[DRS+93] Rainer Drexler, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, Werner
Stephan, and Andreas Wolpers. The KIV system: A tool for formal program
development. In STACS, pages 704–705, 1993.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[Koz85] Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178,
1985.

[Pel87] David Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987.
[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom.

Reas., 41(2):143–189, 2008. doi:10.1007/s10817-008-9103-8.

15-316 Lecture Notes Matt Fredrikson

https://doi.org/10.1007/11814771_23
https://doi.org/10.1007/s10817-008-9103-8

L3.12 Semantics, Safety, & Dynamic Logic

[Pla17] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer,
Switzerland, 2017. URL: http://www.springer.com/978-3-319-63587-3.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. pages
109–121, 1976.

15-316 Lecture Notes Matt Fredrikson

http://www.springer.com/978-3-319-63587-3

	Introduction
	Review
	Programs
	Semantics of terms and formulas
	Program semantics

	Safety properties
	Assertions and aborted execution
	Program contracts

	Reasoning about safety properties and programs
	Dynamic Logic
	Contracts in Dynamic Logic

	Next lecture

