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1 Introduction & Recap

We began studying safety properties by intuiting that they describe systems where
something “bad” never happens, and have seen that contracts, assertions, memory
safety, and more granular forms of sandboxing are all instances of safety. But there
are certainly other types of bad events that we might want to write policies to enforce
against, and aside from finding a way to encode them in programs using assertions, it
isn’t clear how we would go about doing this.

Today we will generalize what we have learned about enforcing safety by first encod-
ing the bad prefixes using automata, and then monitoring a trace as it evolves though
exection. This style of policy, called security automata [Sch00], is powerful enough to
encapsulate all of the safety properties that can possibly be enforced at runtime, and is
thus an indespensible tool for ensuring code safety.

2 Security automata

To begin developing an intuition for how safety properties can be represented using
automata, we return to invariant properties—arguably the simplest type of safety prop-
erty that we studied. Suppose that we want to enforce a condition on x, e.g.,

0 ≤ x

In terms of bad prefixes, we could characterize this as any trace containing a state in
which x < 0. We could imagine “watching” the trace as it develops, and if it ever enters
such a state, we would know that safey has been violated. This type of monitoring can
be formalized by constructing a finite automaton, whose states represent the status of

https://15316-cmu.github.io/index.html
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our policy, and whose transitions correspond to the current, most-recent state of the
program’s trace.

In this case, our simple policy has a single status, namely whether 0 ≤ x has remained
true so far in the trace. While we may observe many distinct states as the program exe-
cutes, the only fact that matters from our perspective is whether this predicate remains
true in the current state. To capture all this, we can draw the following automaton.

Λ

x ≤ 0

x > 0

This tells us everything that we need to know to enforce the invariant as we watch the
trace unfold. We begin in a state where the policy has not yet been violated, because the
program has not done anything yet. At each moment before a command is executed,
we examine the current state, and match one of the conditions on the transitions to
update the status of the policy. If we ever reach the error state, then we must have seen
a bad prefix, and the policy is violated.

Notice that we do not really need to make the error state quite so explicit, and could
just as easily leave it implicit.

x ≤ 0

Here, rather than waiting to enter the error state, we merely want to make sure that
there always exists some transition with a label that describes the most recent state in
the trace. If we ever see a state that does not satisfy any of the transition labels em-
anating from the current policy state (i.e., one where x > 0), then we conclude that
the current prefix must be bad, and the policy is violated. This is called a security au-
tomaton [Sch00], and is the main abstraction that we will use to encode safety in this
lecture.

2.1 A more interesting example.

As the states comprising traces in our language consist of variable and memory map-
pings, we have so far been unable to formalize properties that account for the com-
mands that are executed over time. For example, if our language has the ability to
make system calls, such as send and recv from the network and read from a local file,
we might want to enforce a policy which says that a program should not send data
over the network after it has read from local files. This is indeed a safety property, but
to understand it in terms of bad prefixes, we would need to extend the states in our
semantics to reflect the commands that are executed.
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Accounting for commands. Namely, we could formalize states as triples (ωV , ωM , *pc)
consisting of variable mappings ωV , memories ωM , and “program counters” *pc. Un-
like ωV and ωM , the *pc component is not a mapping, but rather a value ranging over
programs. We could easily extend the semantics of the language to maintain this state,
for example:

[[x := e]] =
{(ω, ν) : ωJeK defined, ν = ω except νV (x) = ω[[e]], ν*pc = x := e} ∪
{(ω,Λ) : ωJeK is not defined, ν*pc = x := e}

There are multiple ways that we could update the semantics of compound commands
like α;β and if(P )α elseβ. The most straightforward would be to leave their seman-
tics unchanged, merely carrying the updates to *pc made by the atomic commands
forward. In other words, consider the following program.

x := y; Mem(x) := 0

The traces of this program have three states ω0, ω1, ω2. Because nothing has executed in
the initial state, we would assume that *pc takes a “null” value, e.g., ∅. After the first
command executes, *pc in ω1 would be x := y, and in the final state, *pc = Mem(x) := 0.
This would be a consequence of maintaining the usual semantics for sequential com-
position:

[[α;β]] = {σ ◦ ς : σ ∈ [[α]] , ς ∈ [[β]]}

In other words, we want *pc to point to the most recent command that resulted in a
new state, and the commands that cause this are atomic (i.e., variable update, memory
update, and assert).

The alternative would be to add a state when the compound command begins exe-
cuting, so that the way in which the program is composed is reflected in traces.

[[α;β]] = {ω ◦ σ ◦ ς : ω = σ0 except that ω*pc = α;β, σ ∈ [[α]] , ς ∈ [[β]]}

This approach might be useful if we need to define safety properties that depend on
the composition of commands. However, the downside is that the updates to the se-
mantics are more extensive, and slightly less intuitive. For the remainder of the lecture,
we will assume that the semantics are updated only to record the execution of atomic
commands, and the semantics of compound commands are left unchanged.

No send after read. Depicted below is a security automaton for the safety policy “no
send after read”. The states are abstract in the sense that they do not reflect anything
about the state of the program or what it is currently doing. Rather, they represent the
state at which the policy is currently in. The transitions reflect facts about program state
that must be true in order for the automaton to transition. In this case, pc denotes the
current program counter, and *pc its contents. So for example *pc 6= read corresponds
to states in which the current instruction pointed to by the program counter is not read.
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*pc 6= read

*pc = read

*pc 6= send

Notice that as was the case with the invariant policy earlier, the only arrow going out of
the rightmost state is a self-loop labeled *pc 6= send. There are no accepting states in a
security automaton, and the way to interpret them is that as long as the automaton can
transition from some arrow in its current state, then the policy has not been violated. So
in this case, if the current policy state were the rightmost one, and the program entered
into a state where *pc = send, then there would be no arrow to transition from and the
policy would become violated.

Another way to think about it is that there is a “hidden” error state which corre-
sponds to the policy being violated. Every node has a transition to the error state on
the condition that is the negation of all other outgoing transitions from that state, as
shown in the diagram below.

...Λ

P1

P2

Pn−1

Pn

¬(P1 ∨ · · · ∨ Pn)

These definitions are equivalent, and we will continue using the convention that does
not explicitly list the error state as this will reduce clutter in our diagrams.

Definition 1 (Security automaton[Sch00]). A security automaton is a nondeterministic
state machine that consists of the following components:

• a countable set O of automaton states,

• a countable set O0 ⊆ O of initial states,

• a countable set Σ of transition symbols,

• a transition relation δ ⊆ O × ℘(Σ) × O between automaton states and sets of
transition symbols.

We will assume that the transition symbols always correspond to program states, and
that sets of program states are represented by formulas that can be evaluated over pro-
gram states. Concretely, the set of states corresponding to a formula is comprised of
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exactly the states that the formula is true in. Given a sequence of transition symbols
(i.e., states) σ = σ0, σ2, . . ., we say that the autoamton accepts σ if and only if there is a
corresponding sequence of states o = o0, o1, . . . such that for each pair σi, σi+1 in σ,

• there is a corresponding pair oi, oi+1 of states in o,

• and there exists (oi, P, oi+1) ∈ δ where σi � P .

In other words, a trace is only accepted if there is a corresponding run of the automaton
that always follows the transition function.

Definition 1 formally defines security automata in terms of a set of states O and tran-
sition symbols S. We will generally assume that S is the set of all program states, so that
we can describe program traces as being accepted or not by a security automaton. This
also implies that sets of states in the transition relation are defined in terms of formulas
on program states, which we have already studied extensively.

2.2 Enforcing security automata policies

The primary means of enforcing policies defined using security automata is with a ref-
erence monitor (RM). The RM is a mechanism that examines the program as it executes,
using information about the current and past states to decide whether the policy has
been violated. This is done according to Definition 2, and was sketched out at the be-
ginning of this section.

Definition 2 (Security automaton enforcement). Let Oc be the current set of states that
the security automaton is in. Then for each step that the program is about to take
resulting in new program state ω, the reference monitor does one of two things.

1. For each state o ∈ Oc that the automaton can transition from, the states δ(o, P, o′)
for all transition edges where ω � P are added to the new automaton states.

2. If the automaton cannot transition from any of its current states, then the program
is not allowed to enter state ω and the reference monitor takes remedial action.

As long as the policy is not violated, then the RM allows the program to continue
executing as it otherwise would. If the policy is violated, then the RM intervenes on the
program execution to take some remedial action. This could mean simply aborting the
execution, or something less drastic that prevents harm in other ways.

Necessary assumptions. As pointed out by Schneider in his seminal work on se-
curity automata [Sch00], there are several assumptions that one must make in order to
enforce these policies effectively with a reference monitor. First, the reference moni-
tor needs to simulate the execution of the automaton as the program runs, so it must
keep track of which state the policy is in on the actual hardware running the program.
This means that the automaton cannot require an unbounded amount of memory, so
automata that have an infinite number of states are not in general enforceable.

15-316 LECTURE NOTES MATT FREDRIKSON



L11.6 Security Automata & Instrumentation

Second, the RM must be able to prevent the program from entering a state that would
result in a policy violation. This is called target control, and is a more subtle issue that it
may at first seem. Take for example the policy of “real-time” availability, which states
that a principal should not be denied a resource for more than n real-time seconds.
How could a reference monitor enforce this policy? It might try to predict the amount
of time that it takes to remediate a trace that is about to violate the policy, and take
action earlier than necessary to prevent the violation. But how does it know that the
policy would have actually been violated in this case? Unless the reference monitor can
literally stop time, this is not an enforceable policy.

Third, the program under enforcement must not be able to intervene directly on the
state of the reference monitor. This is called enforcement mechanism integrity, and is cru-
cial for ensuring that the policy defined by the automaton is the one that is actually
enforced on the target program. We dealt with an instance of this issue earlier in the
lecture, when we used control flow integrity to make sure that inlined safety checks
weren’t bypassed by indirect jumps. But now that the policy itself has state, the enforce-
ment mechansim must also guarantee that the target program does not make changes
to that state or influence it in any way that doesn’t follow the automaton transitions.

Inline SA enforcement. One approach to implementing security automata enforce-
ment uses inlined checks to update and maintain state set aside to simulate the au-
tomaton. If we assume that formulas on SA transitions are formulas over program
states, and there are N security automata states, then we can set aside a region of N
memory cells at addresses asa through asa + N to hold the current state of the automa-
ton. If Mem(asa + i) is non-zero, then we assume that the automaton has entered into
state i, and otherwise not.

Next we need to implement the transition function, updating the contents of Mem(asa)−
Mem(asa +N) to simulate the automaton. Suppose that the automaton has an edge from
states i to j labeled with formula P . Then for each instruction in the program we com-
pute the verification condition of (1).

[α]¬P (1)

If (1) is valid before executing α, then it means that all traces after executing α will
satisfy ¬P . On the other hand, if it is not valid, then at least one trace of α may satisfy
P . This means that we need to insert a check whenever Eq 1 is not valid.

What check do we insert? At runtime, we will be in a particular state ω. We want
to know if after executing α, P will be true, and if it is, then update the state of the
automaton. We can accomplish this by simply checking that ω |= [α]P . Of course, we
will want to use axioms to remove the box modality so that the check is actually in
terms of arithmetic, and can be easily evaluated.

So we insert instrumentation immediately before α that checks Mem(asa+i) 6= 0∧[α]P ,
and if it is true then sets Mem(asa+j) to a non-zero value. Then for each state i in the SA,
we compute similar checks for transition to the “error state”. If i has outgoing edges
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labeled P1, . . . , Pn, we insert a check for:

Mem(asa + i) 6= 0 ∧ [α]¬(P1 ∨ · · · ∨ Pn) (2)

If this check passes, it means that the automaton cannot transition from state i. If this
holds for every state in the automaton, then the instrumentation aborts execution.

The instrumentation described so far only addresses updates to the SA state. We
must also take steps to ensure the integrity of the inlined mechanism, and there are two
sources of vulnerability.

• The contents of Mem(asa) − Mem(asa + N) must not be modified by any part of the
program except the inserted instrumentation. Applying software fault isolation
to the untrusted instructions can ensure that this aspect of integrity holds.

• The inserted instrumentation could be subverted by indirect control flow. Enforc-
ing CFI on the untrusted code using the original control flow graph ensures that
this will not happen.

This is sufficient to implement a basic inlined security automaton enforcement mech-
anism. However, it may impose a severe performance overhead due to all the safety
checks.

3 Dynamic instrumentation

We have been discussing policy enforcement in a somewhat idealized model, where we
assume that programs are given to us as source code in a simple language with few in-
structions. In the “real world” this is not usually the case, and we may be forced to deal
with large untrusted programs given to us to execute at runtime, and possibly without
source code. So we must find a way to enforce policies on bytecode, and presumably
fast lest we introduce unacceptable latency into the system.

Suppose that we wish to implement the inline security automata enforcement scheme
from the previous section by changing the instructions throughout the program prior
to running it. This seems like a reasonable approach, because the scheme just requires
that we check verification conditions on each instruction and replace them when nec-
essary. All that we need to assume is the ability to identify instructions, and compute
verification conditions.

3.1 Challenges for static instrumentation

But bytecode programs on modern architectures like x86 and AMD64/Intel 64 are ex-
tremely difficult to reason about statically, and it may not even be possible to identify
which instructions the program will end up executing. One practical issue is the fact
that programs can generate new instructions by writing to memory, and then use an
indirect jump to begin executing the newly-written code. This can be mitigated by
the operating system with a Write XOR Execute policy, which ensures that any page of
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memory may be either writeable or executable, but not both. This is effective, but makes
some functionality extremely difficult to implement such as language interpreters that
do on-the-fly compilation and optimization.

Even with Write XOR Execute, the presence of indirect control flow and variable-
length instruction encoding makes it impossible to tell which instructions will actually
be executed. The program can do an arbitrarily complicated computation to derive a
target address in existing code, so that the static analysis is unable to determine where
execution will resume after a jump. If the target address is in the middle of an existing
instruction, it may result in a completely different program being executed. Consider
the following example, taken from [Sha07].

Bytecode Instruction

f7 c7 07 00 00 00 test $0x00000007, %edi

0f 95 45 c3 setnzb -61(%ebp)

(3)

This code is taken from the entry point of an encryption routine in the GNU C library,
often referred to as simply libc. If execution begins one byte after the entry point of (3),
a completely different program is executed.

Bytecode Instruction

c7 07 00 00 00 0f movl $0x0f000000, (%edi)

95 xchg %ebp, %eax

45 inc %ebp

c3 ret

(4)

Importantly this implies that given a sequence of bytecodes, there are numerous pos-
sible programs that could end up being executed depending on which addresses are
targeted by indirect jumps. In order to instrument the right one, a static analysis needs
to determine what these addresses will be, and this is an undecidable problem in gen-
eral. Moreover, it could be that information not available statically, such as network
packets, are used in part to compute target addresses, adding yet another very plausi-
ble complication for static instrumentation in this setting.

3.2 Instrumenting with just-in-time compilation

Perhaps a better approach given these challenges is to delay “code discovery” until the
program is actually running. This is helpful for many reasons.

• If the program generated instructions in memory and transferred control to them,
we no longer need to infer what those instructions will be. We can simply wait
until the program has already written them, and instrument them immediately
before the control transfer.

• If a program executes an indirect jump, we do not need to predict what the target
address will be. We simply wait until immediately before the jump is executed, at
which point the target address will be stored in memory or a register, and begin
instrumenting the target of the jump.
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• Some other cases that we have not discussed are handled similarly, such as li-
braries that are loaded after the program begins executing. In each such case, the
instrumentation is delayed until immediately before the instructions in question
begin executing, at which point all of the necessary information is available.

The obvious drawback to this approach is the fact that we need to examine the execu-
tion as it unfolds, rewriting instructions whenever necessary as dictated by the policy.

Just-in-time compilation. A successful and widely-deployed approach to mitigate
the performance penalty imposed by such a scheme is called just-in-time (JIT) compila-
tion [Ayc03]. The key insight behind JIT compilation is to increase the granularity at
which the instrumenter examines code at runtime, looking at “chunks” of instructions
rather than individual ones.

Increasing the granularity in this way allows the instrumenter to compile instruction
chunks, with their instrumentation included, on the fly into optimized code that is then
executed directly. Further performance enhancements can then be layered on top of this
basic approach, such caching previously-compiled chunks to save redundant work,
as well as more aggressive optimizations to sequences of chunks that end up being
executed more often.

The question then becomes what constitutes a chunk. Larger chunks will generally
create more opportunities for optimization, and because more of the instructions are
dealt with each time, require fewer (expensive) calls to the compiler. However, this
tendency is limited by the fact that if a chunk crosses an indirect control flow instruc-
tion, then we run into exactly the same problems we are trying to avoid with dynamic
instrumentation in the first place. Even if our chunks cross direct, predictable control
flow branches, then we run the risk of doing unnecessary compilation and instrumen-
tation by processing multiple branches when the execution will only end up following
one of them.

The typical approach is to use basic blocks as chunks. A basic block is a contiguous
sequence of instructions that ends in a control flow transfer instruction (e.g., jmp, ret,
call, . . . ). For example, the sequence of instructions in (4) is a basic block because it
ends with a ret instruction, which transfers control to the instruction pointed to by the
return address on the stack. On the other hand, (3) is not a basic block because it does
not end in such an instruction.

Using basic blocks as chunks, the instrumenter will begin scanning a sequence of
bytecodes until it reaches a control transfer instruction. It will then instrument each
of the instructions in the basic block as prescribed by the policy, compile the resulting
instructions, and execute them. However, it must ensure that it regains control when
the basic block is finished executing. It then begins scanning instructions again at the
bytecodes pointed to by the instruction pointer, repeating the process all over again. In
this way we can be sure that exactly the code that is executed is instrumented according
to the policy.
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Figure 1: Pin software architecture (from [LCM+05]).

A look ahead: Pin. In your next lab, you will make use of an instrumentation tool
called Pin [LCM+05] that is based on JIT compilation. Pin is under ongoing devel-
opment by Intel, and is widely used in industry as well as in academic research. It
simplifies the task of instrumenting binaries at runtime by providing a high-level API
for both inspecting and instrumenting sequences of instructions at runtime.

To see why this is helpful, consider the task of instrumenting an x86 binary to prevent
writes to certain portions of memory. To do so, we must rewrite all instructions that can
change memory with instrumentation to stop the unwanted writes. Which instructions
can change memory? The obvious ones are mov, push, pop, lea, xchg, and perhaps a few
others. But what about the many variants of mov, such as movsb, movsw, movz, movzx?
Do the other instructions have variants as well, and how can we be sure that we’ve
covered each one? Pin simplifies things for us by providing INS_IsMemoryWrite(ins),
which returns true if ins can update memory.

Figure 1 shows the architecture of Pin. Users interact with it by writing a “Pintool”,
which is a conventional C or C++ program that makes use of the Pin inspection and
instrumentation API. To run a compiled program under the pintool’s instrumentation,
the program’s binary is passed to Pin along with the compiled pintool. Pin then takes
care of just-in-time compiling the target program, and can invoke callbacks to the pin-
tool as requested for inspection, or rewrite instructions as requested for instrumenta-
tion. As execution proceeds, Pin’s optimization routines run in tandem to progressively
optimize the compiled code.

You will learn more about the specifics of the Pin API in the handout for the next
lab, and get hands-on experience using it to implement SFI as well as a security au-
tomaton policy. For more detailed information on how Pin works, consult the original
paper [LCM+05].
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