
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Relaxing Noninterference

Matt Fredrikson

Carnegie Mellon University
Lecture 15

1 Introduction

In the previous two lectures, we have developed and studied a type system that en-
forces non-interference (Definition 1). Non-interference is a powerful information flow
property, stipulating that variables assigned to designated “high security” classes have
no influence over the values held in variables of lower-security classes. It is useful for
establishing a number of security goals, such as confidentiality and integrity.

The former goal concerns the flow of secret information out of a program through
channels that may be observable to untrusted entities, and is perhaps the most commonly-
cited use of non-interference in security. The latter goal, integrity, concerns the flow of
untrusted information into a program, and is a key property to establish when one
wants to eliminate the possibility of untrusted entities influencing critical parts of the
program.

Definition 1 (Non-interference). Let α be a program and Γ a type environment associ-
ating security labels to all of the variables in α. Then α satisfies non-interference under
Γ if and only if executing α under L-equivalent states leads to final states that are also
L-equivalent. More precisely,

∀ω1, ω2.ω1 ≈Γ,L ω2 ∧ 〈ω1, α〉 ⇓ω′
1 ∧ 〈ω2, α〉 ⇓ω′

2 → ω′
1 ≈Γ,L ω

′
2 (1)

where ω1 and ω2 range over the set of possible program states.

However, the stricture of non-interference can be problematic for many applications.
Consider a program that authenticates users using passwords, using a database of cre-
dentials stored in local memory. It seems natural to apply non-interference to such a
program to ensure that the secret credentials don’t inadvertently leak out through pub-
lic channels. A quick analysis of this proposal however indicates that it is doomed to

https://15316-cmu.github.io/index.html


L15.2 Relaxing Noninterference

failure, because of the necessary implicit flow that informs users of whether the pass-
word they provided is correct.

Our intuition tells us that there should be a way to formalize the security properties
of such programs, as they have been used for decades without serious issue1. In today’s
lecture, we will see one such approach for relaxing non-interference to allow for selected
flows that have been deemed in advance to pose an insignificant threat to security.

2 Relaxing non-interference: a simple example

Let us continue with the example of a password-checking program, but because the
programming language we work with only handles integer types, we will view pass-
words as personal identification numbers (PINs). To make things concrete, we will
for now confine our discussion to the following program fragment that checks a user-
provided “guess” against the value stored in a variable holding the correct PIN.

auth := 0; if(guess = pin) auth := 1 (2)

This program uses the variable auth to hold the result of the authentication check, and
will be communicated to the user to inform them of whether they are granted access
to the system. So auth must be L-typed, as must guess which we assume holds the
value of a variable provided by the user. But pin should be H-typed, because we don’t
want the correct value leaking to users who haven’t provided the correct PIN. What
happens if we try to type this in the environment Γ = (auth : L, guess : L, pin : H)?
Obviously we can’t do it, because the assignment to auth in the H-typed scope will leak
some information about pw.

Why can’t we just type auth as H? The point of an authentication routine like the
one above is to determine when a user is among the list allowed to access the system.
We must expect that some un-authentic users will attempt access, and when they do,
it is unavoidable that our routine will let such users know that they have failed to
authenticate. Thus, the value of auth needs to be typed L, or we will have no way of
communicating this result back over a safe channel.

To address this problem in the special context of such authorization checks, in 1999
Dennis Volpano and Geoff Smith introduced a match expression into the information
flow type system we’ve studied in this class [VS00]. They introduced a corresponding
typing rule that allows the result of a match expression to flow to the class correspond-
ing to the least of its given operands.

(Match)
Γ ` e : `1 Γ ` ẽ : `2

Γ ` match(e, ẽ) : `1 u `2
Where `1 u `2 denotes the greatest lower bound of `1 and `2. Operationally, match just
performs an equality test of its arguments. This makes it easy to rewrite our program

1There are indeed good arguments against using passwords for user authentication, but they mostly rest
on the fact that everyday users tend to select poor passwords that are easy to guess. This is separate
and orthogonal to the information flow security of password authentication programs.

15-316 LECTURE NOTES MATT FREDRIKSON



Relaxing Noninterference L15.3

from before.
auth := 0; if(match(guess, pin)) auth := 1 (3)

Now we see that the assignment to auth will happen in a low context, because Γ `
match(guess, pw) : L u H, and L u H = L.

Understanding leakage. Is this a good idea? The programs that our new type system
with Match verifies no longer need to satisfy noninterference. Now the question of
whether a well-typed program protects secret information is more subtle, because we
don’t have the straightforward all-or-nothing definition of noninterference to rely on.

Although our intuition (and decades of experience) tells us that breaking noninter-
ference in the way that many authorization checks do is probably fine, there may be
other programs we could write in this new language that aren’t so well-behaved. For
example, we could write the following program:

guess := 0 ; while(¬match(guess, pin)) guess := guess + 1

If an attacker with unsavory goals can manage to run this program on the system hold-
ing pin, then the final value of guess will leak the entire contents of pin!

We know that adding match to our language makes it possible for a program to leak
the contents of an H-typed variable into an L variable, but perhaps this does not imply that
doing so is feasible. In this case, the attacker may need to let the program run for time
O(2k), assuming pin is a k-bit secret. Intuitively it seems that this complexity is the best
an attacker can do given match, but can we formalize this intuition to get a guarantee
that bounds the attacker’s complexity when attempting such a leak?

Essentially, we want to state a guarantee that any attacker who uses match to learn
the secret value requires time exponential in the size of the secret. But there are a few
subtleties we should think about when postulating this guarantee.

Deterministic vs. non-deterministic attackers. Although we’ve only talked about
deterministic semantics for our language, it’s good to be explicit about limita-
tions when stating a formal guarantee. In particular, if we were to extend the
language with non-deterministic commands, then keeping our relaxed rule for
match would be a bad idea. The attacker could then non-deterministically choose
a value for guess, compute the value of match(guess, pin), and if it returns true,
learn the secret in constant time.

Distribution of secrets. You may already be familiar with the fact that users tend
to pick bad passwords that are far easier to guess than a naive bound based on
plain bit-length would suggest. Formally, we characterize this fact in terms of the
probability distribution corresponding to passwords selected by users in the “real
world”. The fact that this distribution is not uniform, i.e., does not assign equal
probability to all possible passwords, is what makes password-guessing easier
than O(2k) in practice.

Formalizing real-world distributions is hard. To make our guarantee generalize
to any type of secret, we won’t make any assumptions about the distribution of

15-316 LECTURE NOTES MATT FREDRIKSON



L15.4 Relaxing Noninterference

values for the secret, so our formal statement will need to be qualitative and univer-
sal. In other words, we’ll characterize the complexity of an attacker who attempts
to copy a secret from any distribution (i.e., universal), and we’ll only worry about
whether this attacker can succeed all the time or some of the time (i.e., qualita-
tive).

Secret size. We assume that the secret value is stored in the memory of a real ma-
chine, so it must have a finite length of k bits, for some k. For any fixed k, there
exists a polynomial-time attacker who can brute-force the secret using the pro-
gram above. So our guarantee will need to refer to an attacker who attempts to
learn a secret of any size in polynomial time.

Putting this all together, we can state our guarantee as the following theorem, due to
Volpano and Smith [VS00].

Theorem 2. Let Γ = (s : H, o : L) and α be a deterministic program such that:

1. Γ ` α in the type system that includes match.

2. 〈ω, α〉 ⇓ ν for ω(s) = v, ω(o) 6= v, ν(o) = v.

In other words, α always succeeds at transferring the value stored in s at the initial state into o
at the final state. Then there exists some state ω̂ where:

1. ω̂(s) requires at least k bits to represent

2. Evaluating 〈ω̂, α〉 results in greater than poly(k) evaluations of match.

In other words, the type system prevents polynomial-time attacks on some H state.

Proof. We’ll begin with the intuition behind the proof. The only way for the value of
s to influence the value of o is via calls to match, and each call either eliminates one
possible value of s from the adversary’s list of candidates to consider, or confirms the
correct value. A k-bit variable encodes 2k possible values, so we just need to choose
k large enough that α can’t make enough calls to match to distinguish between all the
possible values.

Suppose that α runs in time poly(k). Choose k large enough such that 2k > poly(k)+1.
Note that α can only call match at most poly(k) times, so there must be a pair of k-bit
values x 6= y such that α doesn’t evaluate match(o, s) in either state ω(o) = x, ω(o) = y.
Then because α is deterministic, if α is to end in ν(o) = x when started in ν(s) = x, it
must also end in ν(o) = x when started in ν(s) = y. Thus the assumption that α runs in
poly(k) is in conflict with the assumptions made of α in the theorem statement.

Question. Theorem 2 makes a fairly specific, and one might argue narrow, statement about
the complexity of attacking a secret using match. Are you convinced by this result? Could you
make the result stronger without changing the operational semantics of match? How might you
make small changes to match to allow for a stronger statement? Are there assumptions that one
might make about an implementation of match (ideally ones that can be realized in practice) to
strengthen the result?

15-316 LECTURE NOTES MATT FREDRIKSON



Relaxing Noninterference L15.5

3 Declassification: A Taxonomy

The Match rule is a simple example of a declassification mechanism. In general, we can
think of a richer space of mechanisms for making information flow protection less rigid
than noninterference. One useful way of characterizing declassification mechanisms
places them along several dimensions [SS09]: what information is released, where con-
trols the release, who is allowed to see it, and when the release occurs.

What. The match construct only allows us to declassify one particular type of in-
formation: the result of an equality comparison between a (potentially) H and
L variable. This is a type of partial information about the H variable, but we could
imagine other forms of partial information we may want to release, such as other
comparisons, aggregates, and samples.

Where. We might also imagine releasing information without sacrificing control over
where it could eventually end up. The type system we have already discussed
employs a security lattice to do this in one way; a partial order on lattice elements
denotes how information is allowed to flow between variables (i.e., `1 v `2 means
that information in an `1 variable can flow to one typed `2, but not the other
way around). Apart from controlling “where” in terms of levels, we can also
think of doing so in terms of code location. By defining which parts of the code
are allowed to read certain pieces of information, we can ensure that potentially
untrusted parts aren’t able to leak them any further.

Who. The information flow type system we’ve discussed doesn’t explicitly differen-
tiate between principals, but one could design a system that tracks who owns a
particular piece of information. With this information, it would then be possible
to specify that certain types of declassification are allowed when the owner of the
data requests them, but not on behalf of any other users. These systems can be
further extended with delegation for additional flexibility. However, one must be
careful to ensure that such mechanisms can’t be abused by attackers.

When. Time can play a nuanced role in declassification. In the example we discussed
at the beginning of lecture, we essentially relied on an argument about timing to
justify the safety of match. Namely, because the secret won’t be leaked in polyno-
mial time, we decided it was safe to release partial information. Another nuanced
application of timing in declassification mechanisms might crop up in the form
of a probabilistic guarantee, which states that a secret will only be released with
some small probability. Essentially, this is an argument that secrets will be leaked
infrequently (assuming the distribution used aligns well enough with realistic as-
sumptions). Finally, timing can play a more obvious role, such as with policies
that dictate the release of information relative to the occurrence of other events on
the system. For example, a digital media retailer might use a policy which states
that the DRM key for a particular title can be released to the user once payment
has been confirmed.

15-316 LECTURE NOTES MATT FREDRIKSON



L15.6 Relaxing Noninterference

We won’t explore every dimension of this taxonomy in greater detail today, and will
instead focus primarily on the what. However, you should consider approaches that
we’ve already discussed, in addition to those we’ll discuss later on, in the context of
this taxonomy. Doing so will highlight the primary differences between different ap-
proaches to information protection and what they are trying to achieve, which can
be helpful when trying to distinguish important high-level (and perhaps generally-
applicable) ideas from incidental low-level details.

4 Formalizing Leakage

Attacker model. The notion of observability is central to precisely defining an infor-
mation flow attacker. We assume that the adversary is able to observe and influence
certain aspects of the program and its execution, and we’re interested in understanding
exactly what the attacker can deduce about the secret parts of the initial program state.

• As we did before when we formalized noninterference, we’ll define a security
lattice L = (SC,v,t,u,⊥). To keep things simple, we’ll use the two-point lattice
SC = {L, H}where L =⊥6= H, so L v H and H 6v L.

• We assume that the attacker knows the code of the program that is executing. It
may seem that this gives our attacker quite a bit of power that may be unrealistic
in some cases, but it frees us from needing to consider whether the attacker is able
to learn this information using other means.

• We assume that there are two moments in time at which the attacker can make
observations about the program state: before the program is run (i.e., the initial
state ω), and after it finishes executing (i.e., the final state ω′). We won’t worry
about nonterminating programs for the time being, although termination behav-
ior could be relevant to information flow.

• We associate the attacker with the lattice element L, and assume that the attacker
can observe any L-typed variable in ω and ω′. We’ll write ωL and ω′

L to denote the
portions of the initial and final states, respectively, that correspond only to the L

variables.

• We provision our attacker with the ability to make arbitrary assignments to the
L-typed variables in the initial state ω.

• Finally, we place no immediate constraints on the time or space complexity of the
attacker. In certain situations we may attempt to characterize how powerful an
attacker needs to be, in terms of time and space resources, but unless otherwise
stated, we assume that the attacker has unlimited resources.

To summarize, our attacker has total knowledge of the program being executed,
along with the ability to decide which values L-typed variables take in the initial state,
and to observe the values of L-typed variables in the initial and final states. The at-
tacker’s goal is to determine which values the H-typed variables take in the initial state.

15-316 LECTURE NOTES MATT FREDRIKSON



Relaxing Noninterference L15.7

Feasible sets and indistinguishability. We’ve introduced the big-step operational
semantics previously, characterizing it in terms of the following relations for expression
and programs, respectively:

〈ω, e〉 ⇓ v 〈ω, α〉 ⇓ ω′

Given a state ω mapping variables to values and expression e (resp. program α), eval-
uation results in a value v (resp. state ω′). When relating the results of different evalu-
ations, it becomes unwieldly to use this notation, as it requires introducing new “tem-
porary” variables to hold the result of each evaluation.

We’ll simplify matters a bit by introducing a new notation:

Ev(ω, e) Ev(ω, α)

Ev(ω, e) (resp. Ev(ω, α)) refers to the value (resp. state) obtained by evaluating e (resp.
α) in ω.

The only way in which our attacker has to go about learning the H-typed values is
by comparing their observations of the L-typed parts of the initial and final states, ω
and Ev(ω, α) with their knowledge of the program’s semantics, and deducing which
values of the initial H variables are feasible, or consistent with her observations and the
program semantics. Note that because programs are deterministic, once the intiial H
values are known, the attacker can deduce them for any other point in the program’s
execution.

We formalize this idea by defining the feasible set given a program α, context Γ, and
initial state ω, using the notation ΩΓ(α, ω) for shorthand. This is nothing more than the
set of initial states that agree with the attacker’s knowledge of the L values of the initial and
final states:

ΩΓ(α, ω) = {ω′ : ω′ ≈L ω and Ev(ω′, α) ≈L Ev(ω, α)}

The feasible set characterizes all of the attacker’s knowledge of what the initial state,
and in particular the H part of the initial state (because the rest is known), could be
given the available information. Intuitively, any state in the feasible set will lead to
exactly the same observations in the initial and final states, and so the attacker has no
way of determining which of these states the program actually started in. From the
attacker’s perspective, they are indistinguishable from each other.

Example 3. Let’s go back to the match construct from earlier, and work out the feasible
set. Suppose that we have a very simple program that consists of a single evaluation of
match.

o := match(l, h) (4)

We’ll assume that Γ = (o : L, l : L, h : H), so the attacker can set the value of l to whatever
they likes in the initial environment, and observe the value of o afterwards. The goal,
of course, is to learn the value h holds in the initial state.

Suppose that we, playing the role of an attacker, choose to run the program in an
environment where ω(l) = v, and in the final environment ν observe that ν(o) = 0.
While this does not allow us to deduce the exact value of ω(h), we haven’t come away

15-316 LECTURE NOTES MATT FREDRIKSON



L15.8 Relaxing Noninterference

completely empty-handed, because we know that ω(h) 6= v. We can deduce this by
reasoning counterfactually, supposing what would have happened in either situation:

• In the case where ω(h) = v, reasoning by our knowledge of the program and the
operational semantics tells us that:

〈ω, match(l, h)〉 ⇓ ν where ν(o) = 1

In other words, if ω(h) = v in the initial state, then we would expect to see ν(o) =
1 in the final state.

• In the case where ω(h) = v′, where v′ 6= v, reasoning by our knowledge of the
program tells us that:

〈ω, match(l, h)〉 ⇓ ν where ν(o) = 0

This is exactly what we observed when we ran the program, so we conclude that
ω(h) 6= v.

So although we didn’t learn the whole value of ω(h), we were able to rule exactly one
potential value out as impossible given our observations. In this case, after running the
program a single time in an initial state where ω(l) = v, we end up with the feasible set:

ΩΓ(α, ω) = {ω′ : ω′(h) 6= v}

On the other hand, by our reasoning above, if we had observed ω′(o) = 1, then we
would have had:

ΩΓ(α, ω) = {ω′ : ω′(h) = v}
The feasible sets and their corresponding deductions are depicted in the diagram below.

ω(h) = v

ω(h) 6= v

ω(l) = v ω(l) 6= v

ν(o) = 1

ν(o) = 0

Each region of the diagram depicts a set of possible initial states, the notations on curly
braces correspond to observations that the attacker can make, and the text inside each
region corresponds to deductions that the attacker can make about H-typed variables.
Obviously, the attacker knows that ω(l) = v, which allows elimination of the right half
of the figure. After setting ω(l) = v in the initial state and observing ν(o) = 1 in the final
state, the attacker can conclude that ω(h) = v, or ω(h) 6= v in the case where ν(o) = 0.

15-316 LECTURE NOTES MATT FREDRIKSON



Relaxing Noninterference L15.9

Example 4. Recall the definition of noninterference from an earlier lecture:

∀ω1, ω2.ω1 ≈L ω2 ∧ 〈ω1, P 〉 ⇓ ω′
1 ∧ 〈ω2, P 〉 ⇓ ω′

2 =⇒ ω′
1 ≈L ω

′
2

In the notation introduced today, we can simply write:

∀ω1, ω2.ω1 ≈L ω2 =⇒ Ev(ω1, P ) ≈L Ev(ω2, P )

What is the feasible set for any program that satisfies noninterference? Looking at the
definition, notice the universal quantifier which says that all L-equivalent initial states
will lead to exactly the same final-state observation, so executing the program won’t
allow us to eliminate any more possible states from the feasible set than those not sat-
isfying ωI ≈L ωL. This leaves us with the set:

ΩΓ(α, ω) = {ω′ : ω′ ≈L ω}

which does not eliminate any possible values for H variables, so no information is
leaked.

Notice in the first example two very different feasible sets. In one case, where match

returns 0, the attacker is left with many feasible values; in fact, only one value is elimi-
nated, so there are 2n − 1 elements assuming n bits to represent the H part of ω.

In the second case, there is exactly one feasible element that remains, so the attacker
has complete knowledge of the H state. The cardinality of the feasible set is one way
of measuring the degree to which P leaks information about H state, quantitatively.
Indeed, this is why we were able to prove the theorem from before: match does not
give the attacker a reliable way of obtaining a small feasible set, so it is difficult to
obtain much information about the H initial state.

Question. What would happen if instead of allowing match, we allowed an expression
compare(a1, a2) which returns 1 iff a1 < a2, to be given the type `1 u `2? Can the attacker
reliably obtain feasible sets that are small enough to effeciently learn the secret?

5 Explicit Declassification

Suppose that we extend our language with a more general-purpose declassification
mechanism, by means of an expression called declassify. The expression declassify

takes a single argument, which is another expression, and works as follows.

1. Operationally, declassify simply returns the value of its argument.

2. In the type system, declassify always types as the least element ⊥, which in our
running example two-label lattice is L, so it does not prevent leaking its value to
any variable.

The typing logic is formalized in the rule below.

(Declass)
Γ ` declassify(e) : ⊥

15-316 LECTURE NOTES MATT FREDRIKSON



L15.10 Relaxing Noninterference

We could also consider generalizing even further, supporting a declassify` expression
for each label ` in the lattice. The corresponding typing rule would be as shown below.

(DeclassL)
Γ ` declassify`(e) : `

To keep things simple, we’ll stick with the former expression declassify for the rest of
the lecture. Notice that this mechansim generalizes the sort of functionality we obtained
from match.

auth := 0; if(declassify(guess = pin)) auth := 1

But we can also do other useful things with it. For example, suppose we have a set of
variables s1, . . . , s100 containing the salaries of 100 employees. Before, if we wanted to
extract any useful information from this data while still obtaining any degree of infor-
mation security regarding its entire contents, there were few options. Noninterference
wouldn’t allow us to release an aggregate like the average, so our type system wouldn’t
allow the program to run. But if we wrap an expression computing the average in
declassify, we are allowed to save the result to L variables.

However, this flexibility is sufficiently powerful that we can also do very bad things,
like simply declassifying variable expressions containing secret data. Thus, when using
declassify, it’s important to understand what’s being leaked. We can reason in terms
of feasible sets and indistinguishability to figure this out.

Indistinguishability and declassification. The declassify construct gives us an
“escape hatch” through which we can selectively relax the stricture of noninterfer-
ence. Citing again the definition of noninterference, let’s think about what declassify
changes:

∀ω1, ω2.ω1 ≈L ω2 =⇒ Ev(ω1, P ) ≈L Ev(ω2, P )

Noninterference says that whenever our initial states are indistinguishable on L vari-
ables, then our final states will be too. In correspondence with this notion, we assume
that an attacker can observe all the L variables in both states.

With declassify, we make a different assumption. Namely, by typing all declassify
expressions as L, we assume that the attacker is able to observe the value of all such ex-
pressions. In other words, given two states ω1, ω2:

• If their values differ in a way that can be observed through a declassify escape
hatch, then we want to allow it.

• However, declassify doesn’t allow arbitrary leaks. If there is a difference be-
tween the H variables in ω1, ω2 that can’t be detected through the value of declassify,
i.e. does not result in different values of the expressions wrapped in declassify,
then the attacker won’t be able to distinguish them.

Armed with this intuition, we can formalize the indistinguishability guarantee that
declassify gives us. Namely, we can weaken noninterference by adding a condition

15-316 LECTURE NOTES MATT FREDRIKSON



Relaxing Noninterference L15.11

to the antecedent of the implication. For a program with a single declassify wrapping
an expression e, perhaps we can say that:

∀ω1, ω2.ω1 ≈L ω2 ∧ Ev(ω1, e) = Ev(ω2, e) =⇒ Ev(ω1, P ) ≈L Ev(ω2, P ) (5)

The property shown in Equation 5 is more subtle than it may seem. To see why, consider
the following program.

s2 := s1;
s3 := s1;
...
s100 := s1

o := declassify((s1 + s2 + · · ·+ s100)/100)

(6)

When this program terminates, avg will contain exactly the initial value of s1. However,
given two initial states ω1, ω2 in which Ev(ω1, s1 + · · · + s100) = Ev(ω2, s1 + · · · + s100),
it will not be the case that Ev(ω1, α) = Ev(ω2, α).

The problem is due to the fact that the H variables appearing in the declassify ex-
pression were assigned before being used in the declassify, so that the declassified
value differs from the indistinguishability condition in Theorem 5. So to ensure that
the leakage characterized in Equation 5 aligns with our intuition of what declassify
means, we need to require that certain variables not change from their initial values
prior to their use in a declassify.

Theorem 5. Let P be a deterministic program such that:

1. Γ ` P in the type system that includes declassify.

2. P contains exactly one instance of declassify(e), over expression e.

3. None of the variables mentioned in e are assigned within the program before the declassify
occurs.

Then the following holds: ∀ω1, ω2.ω1 ≈L ω2 ∧ Ev(ω1, e) = Ev(ω2, e) =⇒ Ev(ω1, P ) ≈L

Ev(ω2, P ). In other words, whenever the initial states are indistinguishable under the declassi-
fication expression, then the resulting final states will be indistinguishable as well.

Proof. Proving this theorem is a good exercise that you should consider doing when
preparing for the final exam. If you have trouble, ask the course staff for some hints or
consult Sabelfeld and Myers [SM04].

This theorem formalizes the intutition we developed above. The additional require-
ment imposed by (3) means that if we wanted to obtain the protection guaranteed by
Theorem 5 using a type system, then we would need to design the rules so that only
instances of declassify whose constituent variables have never been assigned can be
given the type L.

15-316 LECTURE NOTES MATT FREDRIKSON



L15.12 Relaxing Noninterference

References

[SM04] A. Sabelfeld and A. Myers. A model for delimited information release. In
Proceedings of the International Symposium on Software Security, 2004.

[SS09] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. In Pro-
ceedings of the 18th IEEE Computer Security Foundations Symposium (CSF), 2009.

[VS00] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages (POPL), 2000.

15-316 LECTURE NOTES MATT FREDRIKSON


	Introduction
	Relaxing non-interference: a simple example
	Declassification: A Taxonomy
	Formalizing Leakage
	Explicit Declassification

