
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Timing Side Channels

Matt Fredrikson

Carnegie Mellon University
Lecture 15

1 Introduction

A side channel is a means of obtaining information about secret program state that relies
on observations that fall outside the formal model of any information flow protections
that are in place. In recent years, so-called side channel attacks that leave otherwise
well-designed and implemented systems vulnerable to serious issues, such as leaked
encryption keys and sensitive user data.

What does it mean for an observation to fall outside the formal model? Think back to
the way that we defined indistinguishability sets. In particular, we defined them with
respect to a pair of observations ωL, ω′

L. This pair constitutes the observation model of
our information flow protections, and the guarantee that we obtain is contingent on the
attacker’s observations falling within the scope of this pair.

Oftentimes, when programs are run on real systems, there are aspects of the ensuing
execution that are not considered in the formal model used to design the protection
mechanism. Some examples of these are:

1. Execution time

2. Size of the program’s memory footprint, memory access patterns

3. Sequence of instructions executed by the program

4. Electromagnetic radiation emitted from processor, other hardware components

5. Power usage of hardware components

If the attacker is able to make observations that are influenced by any of these aspects,
then any information flow guarantees that rely on the incompatible observation model
will not apply.

https://15316-cmu.github.io/index.html


L15.2 Timing Side Channels

2 Revisiting match

Let’s return to the match function that we’ve discussed several times before. Suppose
that we chose to implement a version called fastmatch that compares two lists for
equality in the following way.

i = 0;

auth := 1;

while(i < len) {

if(pin(i) != guess(i)) {

auth := 0;

i := len;

}

i := i + 1;

}

Is anything wrong with this implementation? Not according to the semantics we’ve
studied previously. We can declassify the output of this function, and the only way an
attacker can misuse the result to leak a secret is by making an exponential number of
calls to this code.

However, if we change the attacker’s observation model to include the amount of time
it takes the code to complete, then the story changes. For now we’ll just think of timing
as the number of execution steps (informally defined at the moment) that it takes to
execute the program. Obviously, obtaining such exact information in practice may be
difficult, but this simplification will help us see the big picture first.

Let’s break this down further to see what information can be learned from this new
observation.

• When the values differ on their first element, the function will return immediately.
This is the least amount of time fastmatch can take.

• When the inputs are the same, fastmatch will execute the longest.

Combining these two facts, the attacker knows that the longer fastmatch executes, the
more elements they have successfully guessed at the beginning of the list. Can we
use this intuition to significantly decrease the exponential-time bound we studied last
week? Consider the following attack, whereN is the number of possible characters that
each position in a password or PIN number can take. We’ll assume that this is finite,
such as 10 or 256 (i.e., lists of digits or ASCII characters) or 264 (i.e., machine integers).

1. First try all one-character passwords “x1”, where x is one of the possible values
taken at indices of the password. Note the amount of time taken for fastmatch to
return in a fresh variable tx1 .

2. Take the first character of the password p(0) to be arg maxx tx1 , i.e. the character
that took the longest for fastmatch to terminate on.

3. Now try all two-character passwords “p(0)x2” obtained by appending each pos-
sible character to the value decided for the first character.

15-316 LECTURE NOTES MATT FREDRIKSON



Timing Side Channels L15.3

4. As before, when done enumerating all two-character passwords that begin with
the decided prefix p(0), update the prefix p(0)p(1) to arg maxx tx1 + tx2 .

5. Continue appending characters that result in the longest execution of fastmatch
until auth = 1 when it finishes.

What is the complexity of this attack? Let L be the length of the high-security PIN/-
password, and we’ll assume that elements are coded in binary so there are log(N) bits
in each element. The brute-force approach that would have been necessary without the
timing information required 2L log(N) = NL queries. With timing information, each el-
ement takes exactly N guesses to find, and so now the attack will finish in LN queries
to fastmatch. In short, timing information reduced an exponential attack into a linear
one. Obviously this poses a serious problem.

3 Side-channel information leaks

Thinking back to when we discussed declassification, we introduced the notion of an
observation model that in turn defines an indistinguishability set for the attacker. The
observation model that we used then was simply the low-security portions of the initial
and final states, (ωL, ω

′
L), we formalized information flow security as noninterference:

∀ω1, ω2.ω1 ≈L ω2 ∧ 〈ω1, c〉 ⇓ ω′
1 ∧ 〈ω2, c〉 ⇓ ω′

2 =⇒ ω′
1 ≈L ω

′
2 (1)

This worked out nicely because the observations (ωL, ω
′
L) are accounted for directly

by the semantic relation ⇓. But now that we are concerned with information leakage
through timing information, the attacker’s observations must also contain the number
of execution steps taken until the program terminates. How do we incorporate such
information in a formal definition of security?

3.1 Cost semantics

One natural approach is to enrich the semantics with precisely this information. Such
a relation is called the cost semantics, as the idea was originally conceived in the context
of formalizing the performance of programs in terms of execution time [?]. To see how
this works, recall our original semantic relations for expressions and commands.

〈ω, e〉 ⇓ v 〈ω, c〉 ⇓ ω′

This notation means that executing expression e (resp. command c) in environment ω
yields value v (resp. state ω′). Now we want to incorporate a notion of execution time
corresponding to discrete steps into our semantics, and we will do so by annotating the
relation ⇓with a cost r.

〈ω, e〉 ⇓r v 〈ω, c〉 ⇓r ω′

This notation means that executing expression e (resp. command c) in environment ω
yields value v (resp. state ω′) in exactly r steps. In this case, r is a non-negative integer,

15-316 LECTURE NOTES MATT FREDRIKSON



L15.4 Timing Side Channels

〈ω, c〉 ⇓1Z c
ω(x) = v

〈ω, x〉 ⇓1Z v
〈ω, e〉 ⇓r1Z v1 〈ω, ẽ〉 ⇓r2Z v2

〈ω, e� ẽ〉 ⇓r1+r2+1
Z v1 � v2 〈ω, true〉 ⇓1B true

〈ω, false〉 ⇓1B false
〈ω, P 〉 ⇓rB b

〈ω,�P 〉 ⇓r+1
B �b

〈ω, P 〉 ⇓r1B b1 〈ω,Q〉 ⇓r2B b2

〈ω, P � Q〉 ⇓r1+r2+1
B b1 � b2

〈ω, e〉 ⇓rZ v
〈ω, x := e〉 ⇓r+1 ω{x 7→ v}

〈ω, α〉 ⇓r1 ω1 〈ω1, β〉 ⇓r2 ω′

〈ω, α;β〉 ⇓r1+r2 ω′

〈ω, P 〉 ⇓r1B true 〈ω, α〉 ⇓r2 ω′

〈ω, if(P )α elseβ〉 ⇓r1+r2 ω′
〈ω, P 〉 ⇓r1B false 〈ω, β〉 ⇓r2 ω′

〈ω, if(P )α elseβ〉 ⇓r1+r2 ω′

〈ω, P 〉 ⇓rB false
〈ω, while(P )α〉 ⇓r ω

〈ω, P 〉 ⇓r1B true 〈ω, α; while(P )α〉 ⇓r2 ω′

〈ω, while(P )α〉 ⇓r1+r2 ω′

Figure 1: Step-execution cost semantics for the simple imperative language. The costs
indicate the number of steps needed to execute the program in a given state.

but we can take r to be a value from a different domain to account for different types
of cost. For example, we will see later how to define a cost semantics that accounts for
memory access patterns using a different domain for r. An example cost semantics is
shown in Figure ??, corresponding to the observation of the number of execution steps
taken to execute an expression or command.

Question. The cost semantics shown in Figure ?? is rather simplistic in terms of the costs
that it assigns to certain operations. For example, the same cost is assigned to evaluating an
integer constant as looking a variable up in memory. This model won’t have a precise correspon-
dence with real execution time, even ignoring things like the cache. How might you refine the
semantics to more faithfully account for timing? Can you incorporate empirical measurements,
and if so, what is the best way to go about it?

Question. We’ve talked about two distinct observation models, but these semantics only
account for one. Supposing we have two cost semantics that account for each observation model,
how can we combine them into a single cost semantics that lets us reason about both types of
observation?

3.2 Side-channel security

Now that the information about runtime available to the attacker is evident in our se-
mantics, we can now go about formalizing what it means for a program to be secure
with respect to leakage through this channel. We want to express a condition which
says that regardless of the values contained in the secret portions of state, the attacker’s
observations over the side channel remain constant. We can follow the basic form of
noninterference (Equation ??), and write:

∀ω1, ω2.ω1 ≈L ω2 ∧ 〈ω1, c〉 ⇓r1 ω′
1 ∧ 〈ω2, c〉 ⇓r2 ω′

2 =⇒ r1 = r2 (2)

15-316 LECTURE NOTES MATT FREDRIKSON



Timing Side Channels L15.5

This aligns perfectly with our intuition that observing the final execution cost is no
different from observing the low-security portions of the final state. In either case, we
formalize security by demanding equivalence of the final observations whenever we
have equivalence of the initial observations. Note that Equation ?? doesn’t account for
observation of the low-security final state, but we can easily add this as follows.

∀ω1, ω2.ω1 ≈L ω2 ∧ 〈ω1, c〉 ⇓r1 ω′
1 ∧ 〈ω2, c〉 ⇓r2 ω′

2 =⇒ r1 = r2 ∧ ω′
1 ≈L ω

′
2 (3)

Given definition of side-channel security, how might we go about designing a type
system which ensures that they hold? What do we need to do differently from the case
of basic noninterference when we prove soundness of such a type system? These are
good questions to think about when preparing for an exam.

4 Constant-time programming discipline

Let us go back to the fastmatch example and think about Equation ?? in hope of de-
veloping a general approach to avoiding such timing leaks. Intuitively, the fact that
the runtime of the program is influenced by high-security data is the direct cause of
the problem. What are the ways in which high-security data can influence runtime?
Looking at the evaluation rules for expressions, we can reason that the runtime is not
dependent on the values that variables take, but rather only the number of operations
present in an expression.

Lemma 1 (Constant-time expressions). Given any expression e, there exists a constant c
such that for all ω and some v, 〈ω, e〉 ⇓c v.

Proof. This is a straightforward structural induction on e. You are encouraged to work
out several of the cases as an exercise.

Question. Is this true on real computing platforms? What are examples of expressions that,
when compiled, might lead to exeuction times that are dependent on the value of the operands?

So this leads us somewhat unsurprisingly to commands as the culprit for secret-
dependent timing channels. But do we need to worry about all commands? Perhaps
not, which we see in the case of assignments. The runtime of those is exactly the run-
time of evaluating the right-hand side expression plus one (to store the result), so the
constant-time exeuction of assignments follows easily from Lemma ??.

But the remaining compound expressions are problematic. Consider an assignment
if(Q)α elseβ, and assume that α takes rα steps while β takes rβ . If rα 6= rβ , then
depending on the value of Q the entire statement will take a varying number of steps
to complete. Critically, if Γ ` Q : H then the number of steps will absolutely depend
on secret data. It is not hard to see that the exact same situation holds for while loops
guarded by condition Q typed H.

So we come to realize that timing channels can arise whenever the program’s control
flow depends on secret data. To be more precise, whenever a change in the value of a

15-316 LECTURE NOTES MATT FREDRIKSON



L15.6 Timing Side Channels

(ConstL)
Γ ` c : L

(TrueL)
Γ ` true : L

(FalseL)
Γ ` false : L

(Var)
Γ ` x : Γ(x)

(UnOp)
Γ ` e : `

Γ ` � e : `
(BinOp)

Γ ` e : `1 Γ ` ẽ : `2

Γ ` e� ẽ : `1 t `2

(Asgn)
Γ ` e : ` ` v Γ(x)

Γ ` x := e
(Comp)

Γ ` α Γ ` β
Γ ` α;β

(If)
Γ ` Q : L Γ ` α Γ ` β

Γ ` if(Q)α elseβ
(While)

Γ ` Q : L Γ ` α
Γ ` while(Q)α

Figure 2: Type system for constant-time programming discipline.

high-security variable can give rise to a change in the program’s control flow, timing
channels may exist.

4.1 A constant-time type system

We can immeidately profit from this insight to design a type system that enforces side-
channel security. Figure ?? shows the rules for this type system, which prevent infor-
mation from any label ` 6v L from flowing to the runtime of a program α. As an added
bonus, these rules also prevent flows that are observable in final-state assignments, i.e.
those that are prevented by the information flow type system we have previously dis-
cussed.

Theorem 2. The type system in Figure ?? enforces both non-interference and timing channel
security. That is, if Γ ` α by the rules in Figure ?? then for all ω1 ≈L ω2,

〈ω1, c〉 ⇓r1 ω′
1 ∧ 〈ω2, c〉 ⇓r2 ω′

2 =⇒ r1 = r2 ∧ ω′
1 ≈L ω

′
2

So α terminates in the same number of steps and in L-equivalent final states when initialized in
either ω1 or ω2

Proof. This requires induction on the big-step derivation 〈ω, α〉 ⇓r ω′ and goes much like
the proof for the non-interference type system that we saw before. As this is an easier
proof than the previous type system, it is left as an exercise.

It may come as a bit of a surprise that the type system in Figure ?? is actually sim-
pler than the one that we discussed for proving non-interference. We seem to obtain a
stronger an more interesting result in Theorem ?? than our former soundness theorem,
but the rules ??, ??, and ?? have fewer preconditions than in the previous type system.
How can this be?

The rub lies in the fact that these rules impose a more strict information flow disci-
pline on well-typed programs. Before when we typed a conditional or while command,

15-316 LECTURE NOTES MATT FREDRIKSON



Timing Side Channels L15.7

we allowed the system to raise the label of pc to the type of the condition as long as the
subcommands could be typed in the resulting context. In the constant-time system, the
corresponding rules refuse to type any conditional or while command with an H-typed
condition. This in turn means that the rule for assignment can be simplified by ignoring
Γ(pc), which is no longer relevant.

So while the type system may be simpler, this undoubtedly comes at the price of
deeming fewer programs as well-typed. Perhaps we could have remedied this by mak-
ing the judgements more nuanced. For example, designing the type system to require
that the number of steps executed by both branches be identical even if the condition
is typed H. This is an intriguing approach, and a topic of recent (and still active) re-
search [?].

4.2 Writing fastmatch in constant-time

Programs that can be well-typed in rules like those in Figure ?? are said to be written
in constant-time programming discipline. While it may seem quite restrictive to never
branch on secret values, it is often the case that functionality which is most naturally
written to branch on secrets can be expressed in constant-time discipline with some
extra thought [?].

Let’s think about how to fix the timing channel in fastmatch. We can think about this
task in terms of the program counter: whenever its value depends on a secret, we’re in
likely trouble. There are two sources of secret-dependent control flow in the program.

1. The most obvious source is the conditional expression in the last match, which
compares x and y. This is what causes the program to terminate early whenever
the two inputs don’t match.

2. A more subtle source of secret-depdenent control flow stems from the fact that
the execution time of fastmatch is not bounded by a non-secret value. This isn’t
a problem in fastmatch, because it will always terminate early unless a correct
guess is supplied as the low-security input. But if this were not the case, then the
number of iterations would be a function of |h|, which would leak the length of
the secret.

Looking at the code of fastmatch, notice first that the number of loop iterations is
now bounded by len, which we’ll assume to be non-secret. Where does the secret-
dependent control flow come into play? The conditional statement inside the loop has a
guard that mentions h, so we see that different values of h could lead to different control
paths. In order to fix this, we’ll obviously need to remove the conditional statement,
so that the same sequence of instructions is executed regardless of the value of h. The
only subtlety is that the output of fastmatch must depend on h, so we need to find a
reasonable way to ensure that the outcome is the same as before.

One way of accomplishing this is to carry the computation of the loop forward through
to the greatest number of iterations the loop can take. Looking at fastmatch, we can
think of it as nothing more than an aggregate of Boolean expressions: when all of the

15-316 LECTURE NOTES MATT FREDRIKSON



L15.8 Timing Side Channels

pin(i) = guess(i), for 0 ≤ i < len , then fastmatch returns 1. If pin(i) 6= guess(i) for
any i, then fastmatch returns 0. In other words, fastmatch is nothing more than a
conjunction over equality literals, which we can easily implement using straight-line
code in the loop.

i = 0;

auth := 1;

while(i < len) {

auth := auth & (pin(i) = guess(i));

i := i + 1;

}

It is important to point out that any solution that leaves the conditional intact is not
in constant-time discipline. For example, one may initially opt for the seemingly more
natural implementation shown below.

i = 0;

auth := 1;

while(i < len) {

if(pin(i) != guess(i))

auth := 0;

else

auth := auth;

i := i + 1;

}

In this version of the program, we still have control flow that is dependent on secret
state. However, the way we’ve written it, the same number of statements are executed
on every branch, regardless of the value taken by secret state. Clearly, an attacker who
is only allowed to see the execution time as the number of steps taken will have no
difference in observations, so one might argue that in this case we need not worry
about the secret-dependent control flow. However, this type of code is discouraged in
constant-time programming discipline for various reasons.

• Code like the last example above tends to be more complex than necessary, and
can be difficult to read. In order to achieve step-time equivalence on all paths,
we needed to essentially insert a noop auth := auth in the else branch, which
adds to the code’s complexity, and might be innocently removed by a collaborator
unaware of our constant-time goal.

• Leaving conditionals that are dependent on secrets in the code forces us to reason
about whether all affected paths are step-time equivalent. As the complexity of
code increases, this quickly becomes difficult and error-prone.

• Optimizing compilers might remove some branches, or instructions in branches,
that we needed for step-time equivalence, with no guarantee that the resulting
program is still constant-time. This would almost certainly happen if we com-
piled the above with gcc configured with standard optimizations.

15-316 LECTURE NOTES MATT FREDRIKSON



Timing Side Channels L15.9

In short, although it may seem unnatural and difficult to write programs so that control
flow never depends on secret values, if constant-time execution is needed for security
then adhering to this discipline is probably the simplest and least error-prone approach
compatible with conventional imperative languages.

15-316 LECTURE NOTES MATT FREDRIKSON


	Introduction
	Revisiting match
	Side-channel information leaks
	Cost semantics
	Side-channel security

	Constant-time programming discipline
	A constant-time type system
	Writing fastmatch in constant-time


