
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Memory Side Channels

Matt Fredrikson

Carnegie Mellon University
Lecture 16

1 Introduction

In the previous lecture, we begin discussing side channels as a means of obtaining in-
formation about secret program state using on observations that fall outside the formal
model of any information flow protections that are in place. In particular, we looked at
timing channels that arise when an attacker can observe how long a program takes to
execute, or how many instructions it executed, to infer secret state.

We informally concluded that timing channels might exist whenever the control flow
of a program depends on secret state. We then formalized this by introducing cost
semantics, which characterize some aspect of resource consumption directly as part of
the big-step semantics of the language.

〈ω, c〉 ⇓r ω′

The cost semantics associates a value r with the execution of a program, which we
defined to correspond to the number of operations performed by the program. Then we
introduced a notion of side-channel security related to non-interference, which requires
that L-equivalent initial states lead to identical values of resource consumption when a
program is executed.

∀ω1, ω2.ω1 ≈L ω2 ∧ 〈ω1, c〉 ⇓r1 ω′1 ∧ 〈ω2, c〉 ⇓r2 ω′2 =⇒ r1 = r2 (1)

When the number of operations executed is a suitable proxy for how long the program
takes to execute, this policy is sufficient to rule out timing side channels. We then
constructed a type system for enforcing this policy, and discussed the corresponding
constant-time programming discipline that is commonly used in practice to mitigate timing
channels.

https://15316-cmu.github.io/index.html


L16.2 Memory Side Channels

2 Cache side channels

So far we’ve focused on timing leaks that arise due to differences in the number of steps
taken along a particular control flow path. It might also be the case that even when the
program executes exactly the same instructions, there are differences that crop up in
execution time due to other factors. One such factor is cache behavior, i.e., the state of
the processor’s cache lines might cause the execution time to differ with variances in
high-security state.

2.1 Example: AES block cipher

This type of side channel was famously exploited by Dan Bernstein [?] and others to
attack software implementations of the AES encryption primitive. To understand how
the attack works, we’ll need some basic information about AES.

Basics of AES. AES is a block cipher, which encrypts a 16-byte input p using a 16-
byte key k. Essential to AES’s encryption are two so-called S-boxes, which are nothing
more than 256 byte tables loaded with values that are constant across all implemen-
tations of AES. These tables are expanded into four 1024-byte tables T0, T1, T2, T3 by
applying an expansion:

T0[i] = (S′[i], S[i], S[i], S[i]⊕ S′[i])
T1[i] = (S[i]⊕ S′[i], S′[i], S[i], S[i])
T2[i] = (S[i], S[i]⊕ S′[i], S′[i], S[i])
T3[i] = (S[i], S[i], S[i]⊕ S′[i], S′[i])

In most implementations, these tables are pre-computed and loaded into memory be-
fore any encryption takes places. For each 16-byte block p to be encrypted, AES first
applies a transformation to k (which we won’t cover in detail here), and then uses the
tables T0, T1, T2, T3 to scramble p. Let p = p0, p1, p2, p3, so that pi is a 4-byte fragment of
p, and similarly for k = k0, k1, k2, k3. AES replaces each pi as follows:

p0 = T0[p0[0]⊕ k0[0]]⊕ T1[p1[1]⊕ k1[1]]⊕ T2[p2[2]⊕ k2[2]]⊕ T3[p3[3]⊕ k3[3]]⊕ k0
p1 = T0[p1[0]⊕ k1[0]]⊕ T1[p2[1]⊕ k2[1]]⊕ T2[p3[2]⊕ k3[2]]⊕ T3[p0[3]⊕ k0[3]]⊕ k1
p2 = T0[p2[0]⊕ k2[0]]⊕ T1[p3[1]⊕ k3[1]]⊕ T2[p0[2]⊕ k0[2]]⊕ T3[p1[3]⊕ k1[3]]⊕ k2
p3 = T0[p3[0]⊕ k3[0]]⊕ T1[p0[1]⊕ k0[1]]⊕ T2[p1[2]⊕ k1[2]]⊕ T3[p2[3]⊕ k2[3]]⊕ k3

More concisely,

pi =
(⊕

0≤j≤3 Tj [p(i+j)%4[j]⊕ k(i+j)%4[j]]
)
⊕ ki

It continues to modify k and p in this fashion for ten rounds, at which point the contents
of p are the final ciphertext.

15-316 LECTURE NOTES MATT FREDRIKSON



Memory Side Channels L16.3

Leaking key bits. Notice that in each round, the value of pi is computed using table
lookup and xor. Each table lookup accesses an index that is dependent on the contents
of the key, e.g., the operation T0[p0[0]⊕k0[0]] will access a different element of the array
holding T0 for different values of the key k. If the amount of time necessary to look up
this element varies depending on the index that is accessed, then we can reason that the
total execution time of the encryption will depend on the value of k.

For this to work, we need to know what timing to expect as a function of k, or some
approximation of it. This is where the cache comes into play. Because cache is a lim-
ited resource, several main memory blocks are mapped to the same cache block by way
of a hash function H . Suppose that address a was previously read, causing the cache
address H(a) to hold its value afterwards, and subsequent accesses to a will complete
more quickly. If we then read address a′, such that H(a) = H(a′), then the correspond-
ing cache block will no longer hold the value at a, and a subsequent read to a will need
to fetch from main memory, thus taking longer to complete.

This is the crux of the attack: by selectively evicting the cache blocks corresponding
to different elements of T0, T1, T2, T3, we can force encryption to take longer than it
would have otherwise. Additionally, because the elements of Ti accessed by encryption
depend on k, we can learn the contents of k by inspecting which evictions cause the
encryption to require more time.

In short, the attack works as follows.

1. Ensure that T0, T1, T2, T3 are cached, e.g., by performing an encryption.

2. Select an element of T0 to be evicted from the cache, and force its eviction by load-
ing from an address that maps to the same cache block. This can be accomplished
by guessing a value for k0[0], and determining which cache block the subsequent
table lookup will consult.

3. Perform an encryption, and measure its time.

4. After doing this for each element of T0, conclude that k0[0] takes the value that
corresponds to the longest lookup from T0.

5. Repeat for k0[1], k0[2], . . . , k3[3].

Notice that this attack requires several capabilities of the attacker.

• The ability to time the execution of encryptions with precision sufficient to detect
cache timing differences.

• The ability to selectively evict portions of the cache.

• The ability to force encryptions.

• Knowledge of the plaintext (i.e., this is a “known plaintext” attack), but not the
key. Without this, it is not possible to determine in advance which Ti will be
accessed, as it is indexed as p(i+1)%4[j]⊕ k(i+1)%4[j].

15-316 LECTURE NOTES MATT FREDRIKSON



L16.4 Memory Side Channels

Although these requirements may seem improbable, attacks like this have been demon-
strated in practice, and preventing them requires careful constant-time programming
discipline.

An alternate attack. There is an alternate way of mounting this attack known as
FLUSH+RELOAD [?]. Consider an attacker who operates as follows.

1. Flush the entire cache.

2. Trigger an encryption.

3. Access memory corresponding to each cache block, and see which addresses take
longer to load. Those that do must not have been accessed during the AES oper-
ation.

This attack doesn’t measure the encryption routine’s timing at all, but instead measures
the timing of the attacker’s code! In fact, this is actually a more efficient attack, as
one encryption yields substantially more information about which table elements were
accessed, and thus more information about the key. Yarom and Falkner [?] reported
being able to recover approximately 98% of the bits in an encryption key by triggering
a single encryption with this method.

This variant of the attack works because the cache is a shared resource that allows
users to infer certain details of how other applications use it. Specifically, the cache
allows users to determine which memory addresses were recently accessed by other
processes. Thinking in general terms, we can thus abstract the attacker’s abilities here
as observing memory access patterns: the cache side channel attacker is able to observe
which memory locations are accessed by a program, but not the contents of the access.

2.2 Plugging the leak: memory access as cost

Like in the case of fastmatch from the previous lecture, this vulnerability arose due
to the attacker’s ability to detect timing differences in an operation that depends on
secret data. These timing differences were caused by the cache’s state depending on
this secret data, which gave the attacker the ability to degrade performance when her
guess for the secret key was correct.

Armed with this insight, we can begin to reason about how to effectively mitigate
cache side channels. Before, we reasoned that the number of execution steps (our proxy
for timing) could be mitigated by ensuring that control flow does not depend on the
contents of secret variables, as long as each step takes the same amount of time. Now,
we can translate this approach to our attacker’s new set of observations, and conclude
that attacks like the one we just saw can be mitigated by ensuring that the set of memory
addresses accessed by the program does not depend on secret state.

To mitigate timing channels in the model that treats execution steps as observations,
we formalized security in terms of cost semantics using execution step costs, and then

15-316 LECTURE NOTES MATT FREDRIKSON



Memory Side Channels L16.5

〈ω, c〉 ⇓εZ c
ωV (x) = v

〈ω, x〉 ⇓εZ v
〈ω, e〉 ⇓rZ v1 ωM (v1) = v2

〈ω, Mem(e)〉 ⇓r::v1Z v2

〈ω, e〉 ⇓r1Z v1 〈ω, ẽ〉 ⇓r2Z v2

〈ω, e� ẽ〉 ⇓r1+r2+1
Z v1 � v2

〈ω, true〉 ⇓εB true 〈ω, false〉 ⇓εB false
〈ω, P 〉 ⇓rB b
〈ω,�P 〉 ⇓rB�b

〈ω, P 〉 ⇓r1B b1 〈ω,Q〉 ⇓r2B b2

〈ω, P � Q〉 ⇓r1::r2B b1 � b2

〈ω, e〉 ⇓rZ v
〈ω, x := e〉 ⇓r ωV {x 7→ v}

〈ω, ẽ〉 ⇓r1Z v1 〈ω, e〉 ⇓r2Z v2

〈ω, Mem(e) := ẽ〉 ⇓r1::r2::v2Z ωM{v2 7→ v1}

〈ω, α〉 ⇓r1 ω1 〈ω1, β〉 ⇓r2 ω′

〈ω, α;β〉 ⇓r1::r2 ω′
〈ω, P 〉 ⇓r1B true 〈ω, α〉 ⇓r2 ω′

〈ω, if(P )α elseβ〉 ⇓r1::r2 ω′
〈ω, P 〉 ⇓r1B false 〈ω, β〉 ⇓r2 ω′

〈ω, if(P )α elseβ〉 ⇓r1::r2 ω′

〈ω, P 〉 ⇓rB false
〈ω, while(P )α〉 ⇓r ω

〈ω, P 〉 ⇓r1B true 〈ω, α; while(P )α〉 ⇓r2 ω′

〈ω, while(P )α〉 ⇓r1::r2 ω′

Figure 1: Memory access cost semantics for the simple imperative language. The costs
indicate the sequence of memory accesses made when executing the program
in a given state.

designed a type system that prevent leakage from secret state to that cost. We can fol-
low a similar strategy for cache side channels by defining a cost semantics that reflects
memory access patterns in the cost.

Now our cost domain will consist of sequences of memory indices that are either read
or written throughout the execution of a program. So for the following program that
makes three memory accesses.

x := Mem(16);x := x+ 1; Mem(32) := Mem(16) + x;

We would have the following “cost” as a sequential list of accesses: 16 :: 16 :: 32. We
will use ε to denote the empty list. Then the cost semantics for memory accesses are
shown in Figure ??. For the most part these rules follow the same basic form as the
execution step cost semantics shown in Figure ??. Compound commands such as com-
position and conditional “add up” the costs r1 and r2 of their subcomponents using
sequences concatenation r1 :: r2 rather than integer addition. Expressions and com-
mands whose evaluation result in no memory accesses take cost ε to reflect the fact that
they leave no observable information in the cost.

The only rules that change the cost in non-trivial ways are those for memory lookup
Mem(e) and update Mem(e) := ẽ. In the former case, the index e is evaluated to v1, and
this evaluation step has its own cost r. Then the final cost for this expression is r :: v1,
as the location v1 is accessed after r is incurred. In the latter case of memory update,
first the right-hand side ẽ is evaluated at cost r1, then the index e is evaluated to v2 at
cost r2. Finally, the cost of executing this command is r1 :: r2 :: v2, which reflects the

15-316 LECTURE NOTES MATT FREDRIKSON



L16.6 Memory Side Channels

(ConstL)
Γ ` c : L

(TrueL)
Γ ` true : L

(FalseL)
Γ ` false : L

(Var)
Γ ` x : Γ(x)

(MemD)
Γ ` e : ` ` t Γ(pc) v L

Γ ` Mem(e) : L

(UnOp)
Γ ` e : `

Γ ` � e : `
(BinOp)

Γ ` e : `1 Γ ` ẽ : `2

Γ ` e� ẽ : `1 t `2
(Comp)

Γ ` α Γ ` β
Γ ` α;β

(Asgn)
Γ ` e : `1 `1 t Γ(pc) v Γ(x)

Γ ` x := e

(MemU)
Γ ` e : `1 Γ ` ẽ : `2 `1 t `2 t Γ(pc) v L

Γ ` Mem(e) := ẽ

(If)
Γ ` Q : ` `′ = ` t Γ(pc) Γ, pc : `′ ` α Γ, pc : `′ ` β

Γ ` if(Q)α elseβ

(While)
Γ ` Q : ` `′ = ` t Γ(pc) Γ, pc : `′ ` α

Γ ` while(Q)α

Figure 2: Conservative type system for mitigating cache side-channel leaks.

order in which the subexpressions were evaluated with the final access being the one
that updates memory in this command.

Now that we have characterized the attacker’s observation in a cost semantics, we
must define what it means for a program to be secure in this model. Luckily, the def-
inition from before as shown in Eq. ?? do not make any assumptions about the cost
domain other than that it is equipped with some notion of equality. Certainly finite
sequential lists of memory accesses have equality, so we can just re-use those notions of
cost-aware non-interference here again.

2.3 A cache-channel type system

Figure ?? shows a type system that follows the same rationale as the one that we saw
for timing side-channels. Namely, a program is well-typed in this system only if there
is no flow of information from secret state to memory accesses. All of the rules except
?? and ?? are exactly as they were in the original non-interference type system. The
rule ?? for memory lookup expressions first types the index expression e as `, and then
assigns the lookup expression type L as long as ` t Γ(pc) v L. This prevents lookups
in both cases where e contains secret information, as well as when lookups happen in
secret-dependent control flow.

Also important is the fact that ?? enforces the invariant that everything read from
memory is of type L. The second half of this invariant comes from rule ?? for memory

15-316 LECTURE NOTES MATT FREDRIKSON



Memory Side Channels L16.7

updates, which checks that the type `2 of the right-hand side as well as the pc are both
typed L before allowing the update. If the type system did not enforce this invariant,
then we would need to assign security labels to each cell of memory as part of the
context Γ. It may be possible if a bit unwieldly to do so, but for the purposes of this
lecture not necessary.

Finally, ?? also checks that the type of the index expression is L, which is again nec-
essary to prevent secret information from leaking into the access cost. In the end this
type system enforces the same security guarantee as the timing-channel type system,
as stated in Theorem ??.

Theorem 1. The type system in Figure ?? enforces both non-interference and cache side-channel
security. That is, if Γ ` α by the rules in Figure ?? then for all ω1 ≈L ω2,

〈ω1, c〉 ⇓r1 ω′1 ∧ 〈ω2, c〉 ⇓r2 ω′2 =⇒ r1 = r2 ∧ ω′1 ≈L ω
′
2

So α terminates with the same memory access patterns and in L-equivalent final states when
initialized in either ω1 or ω2

Proof. The proof of this theorem follows a very similar form to that of Theorem 2 from
the previous lecture and the soundness theorem of the non-interference type system
from Lecture 12. The only extra consideration that must be done is regarding ?? and ??.
It may be helpful to factor out a lemma which proves the invariant that the contents of
Mem are never influenced by secret data. This is left as an exercise.

3 Meltdown

The cache side-channel attacks that we have so far discussed all rely on vulnerable
characteristics of a program that works with secret data. While it may be challenging in
some cases to avoid secret-dependent memory access patterns, it is comforting to know
that we can mitigate these attacks by following an appropriate typing discipline.

Recall from the first lecture when we discussed the Spectre and Meltdown vulner-
abilities disclosed in January 2018. These vulnerabilities rely on cache side channels,
but do not necessarily require secret-dependent memory access patterns in a vulnera-
ble process. Let’s take a closer look at one of these vulnerabilities to better understand
how this is possible, and how such an attack could be mitigated.

3.1 Virtual address spaces

The first key to understanding how the Meltdown attack works is the way that most
modern platforms set up process address spaces. To support the simultaneous execu-
tion of multiple distinct processes on a single system, processors provide virtual address
spaces that map virtual addresses (i.e., addresses referenced by process code) to physical
memory addresses. The virtual address space is divided into units called pages, and the
processor’s mapping consists of a multi-level page translation table from virtual page
addresses to physical ones. The translation tables also contain information that defines

15-316 LECTURE NOTES MATT FREDRIKSON



L16.8 Memory Side Channels

which processes are able to read, write, and execute the contents of a particular virtual
page.

The processor has a register that holds a pointer to the current process’ page transla-
tion table, which is updated each time the operating system performs a context switch
to let the next process run. So each process has its own virtual address space defined by
the translation mapping, and can only reference memory locations that are defined in
its virtual address space. Each process’ address space is divided into user memory and
kernel memory, where the user portion contains the process-specific memory contents
and the kernel portion contains the memory used by the operating system.

The operating system often needs to refer to user memory, such as when it reads
arguments provided to system calls and services other requests and exceptions. To
facilitate this, a portion of kernel memory is often devoted to directly mapping all of
user memory (i.e., for all processes) into a range of kernel memory. This is possible
because the virtual address space on modern architectures allows for referencing 264

distinct addresses, which corresponds to tens of thousands of petabytes, whereas the
amount of physical memory available on machines much smaller.

If the virtual address space for a process also contains mappings for the kernel’s
space, then what prevents a rogue process like the following from simply reading ker-
nel memory and by extension the memory of any other process running on the system?

char *physmem = 0xffff880000000000; // kernel ’s physical memory map

for(i = 0; i < MEMSIZE; i+=4096)

send(sock , &physmem[i], 4096); // send each page of memory

This would obviously be problematic, so the page translation tables specify that ker-
nel pages can only be accessed by code running in priveleged mode, and typical platforms
only grant this to the operating system code itself. So under normal circumstances un-
trusted processes are not allowed to interact with kernel memory, including the portion
that maps to other process’ memory.

3.2 Out-of-order execution

Since the mid-1990’s, processors have supported optimizations that are based on exe-
cuting instructions out of the order in which they appear in memory. This is a powerful
technique that allows the processor to better utilize available resources in cases where
the specified ordering imposes latency and underutilization of the CPU’s execution
units. For example, in the fastmatch implementation from last lecture, each index of
pin was compared against the corresponding index of guess.

while(i < len) {

auth := auth & (pin(i) = guess(i));

i := i + 1;

}

Without out-of-order execution, the processor would need to first fetch pin(i), wait
for the result to come back from main memory (or the cache), then fetch guess(i), wait

15-316 LECTURE NOTES MATT FREDRIKSON



Memory Side Channels L16.9

for the result, and finally compute the equality comparison. Most processors have mul-
tiple execution lines that can operate simultaneously, so out-of-order execution allows
the processor to begin fetching guess(i) before the result of pin(i) returns from main
memory.

The processor can even decide to begin executing an instruction in cases where the
instruction may not end up executing due to a conditional control flow transfer. For
example, in the timing-vulnerable version of fastmatch:

while(i < len) {

if(pin(i) != guess(i)) {

auth := 0;

i := len;

}

i := i + 1;

}

If it turns out that pin(0) != guess(0), the processor may have jumped ahead and
begin fetching pin(1) and guess(1) just in case the condition had evaluated to false

and it needed those values to compute pin(1) != guess(1). This is called speculative
execution, and is widely used by modern platforms.

Importantly, speculative execution is very granular, and applies not just to distinct
instructions but also the micro-operations needed to execute a single instruction. So if
the following code were run by an unpriveleged process:

char *physmem = 0xffff880000000000; // kernel ’s physical memory map

x = physmem [1];

Then the processor may decide to fetch the contents of physmem[1] concurrently
while checking the access rights of the process against the protection flags for address
&physmem[1] specified in the page translation tables. When the check fails, the pro-
cessor erases any pending updates to its state resulting from the speculative fetch of
physmem[1], and raises an exception. However, it turns out that this erasure is incom-
plete, and certain parts of the arcthitectural state including the memory cache may still

3.3 Rogue memory access

The Meltdown attack exploits speculative memory reads, as well as the fact that the
kernel’s address space maps all of physical memory, to present a method for reading
arbitrary physical memory contents from unprivileged code. The method assumes an
attacker that can execute arbitrary code as a normal unprivileged user, but does not
necessarily have physical access to the machine running the code. Importantly, the
operating system on the machine and the other processes may all be bug-free, and the
processor may implement standard memory protection mechanisms—the attack will
still work.

The basic attack consists of the following three steps.

1. The attacker loads the contents of a targeted memory address into a register.

15-316 LECTURE NOTES MATT FREDRIKSON



L16.10 Memory Side Channels

2. A speculative instruction accesses a memory cache location that is based on the
contents of the register.

3. The attacker uses a cache side-channel attack such as FLUSH+RELOAD to deter-
mine which cache location was accessed by the speculative instruction.

Because the cache location depends on the contents of the targeted address, the attacker
can deduce the value held in that address by observing which cache location was ac-
cessed. Note that if the attacker targets an address in kernel space, then the instructions
in Steps 1 and 2 are both speculative, and will not be committed to the architectural
state (but the effect in the cache will remain).

Rather, the access check in Step 1 will fail, and the processor will raise an exception
for the attacker’s process. To avoid crashing the process, the attacker must register
an exception handler to continue executing the cache side channel. Alternatively, the
attacker can allow the process to terminate, and mount the FLUSH+RELOAD attack from
a separate process. For further details and example code, consult the original paper
describing the attack [?].

3.4 Fixing Meltdown

This all seems rather grim. We have an attack that targets operating systems that are
correctly-implemented, requires no special privileges, and allows untrusted processes
to read arbitrary regions of memory that might contain passwords, credit card numbers,
and our other deepest, darkest secrets. What can we possibly do to fix it?

KPTI. The approach that most platform vendors have taken so far to address Melt-
down is called Kernel Page Table Isolation (KPTI). If we go back and think about all of
the conditions that gave rise to the attack, one very good question might come to mind:
why is the kernel address space mapped in unprivileged processes in the first place?

It turns out that there are solid performance reasons for doing so. To reduce the over-
head of mapping virtual memory addresses to their corresponding physical addresses,
processors use a Translation Lookaside Buffer (TLB) that caches recently-accessed virtual-
physical mappings. By keeping the kernel portion of the mapping persistent across all
virtual memory spaces, the corresponding TLB entries do not need to be flushed when
switching between user and kernel code, or even when performing context switches
between processes. Flushing the TLB is expensive because accessing page tables to
repopulate it is costly, and even flushing the entries without repopulating is quite slow.

So keeping the kernel’s virtual address space mapped in each process improves per-
formance significantly, and until Meltdown was discovered was thought to be secure
thanks to standard virtual memory protection checks. But now that we have seen
that leaving kernel memory addressable to unpriveleged code is not secure, perhaps
it makes sense to rethink this design decision and sacrifice some performance.

This is exactly what KPTI does: removes kernel address space mappings from the
page tables that are loaded when unprivileged processes run. More precisely, it isn’t

15-316 LECTURE NOTES MATT FREDRIKSON



Memory Side Channels L16.11

possible to remove all kernel mappings because some code is needed to handle sys-
tem calls, exceptions, and interrupts that might occur during unprivileged execution.
These portions remain, but the rest of kernel memory, including the portion that maps
the entire physical memory, are no longer present. To date, some form of KPTI is the
approach that developers have taken to fix Meltdown.

Secure Hardware Description Languages. Another way to think about the vulnera-
bility that enables Meltdown is in terms of information flow. We can view the addresses
in kernel space as having a high-security label H and those in user space as having label
L, and enforcing a non-interference policy over these labels. But so far we have only
thought about enforcing non-interference on code, and the vulnerability in this case
comes from the way the hardware operates: when speculative memory reads occur,
they flow to the state of the cache, which can then flow to the L user-space addresses.
So do we need to develop an entirely new framework for reasoning about and enforc-
ing non-interference in hardware if we want to design processors that don’t have such
vulnerabilities in the future?

It turns out that hardware designers use languages, called Hardware Description Lan-
guages (HDLs), to design such functionality. While HDLs are specialized to the needs
of efficiently designing and prototyping hardware, they are programming languages
just like any other, and the same principles and techniques that we have discussed all
semester can be applied to them as well. In particular, Ferraiuolo et al. [?] recently
proposed adding security types to HDLs with the express goal of making it possible
to design side channel-free hardware with rigorous guarantees about information flow
security.

Designing new hardware using provably-secure languages is not an approach that
leads to immediate fixes, and does nothing to patch the vulnerability on existing plat-
forms that were designed using conventional tools and techniques. But if we are to
learn from the unfortunate circumstances surrounding Meltdown and its sibling attack
Spectre, one lesson is that hardware side channels are subtle and can lurk in obscurity
even when conventional means (e.g., virtual memory protections) seem to have worked
well for years. Fixing them reactively, as with KPTI, can be costly and unappealing, and
leaves an unacceptable window of vulnerability. When designing the next generation
of hardware, principled methods like secure HDLs are an attractive alternative to the
status quo that has repeatedly failed when it comes to security until now.

15-316 LECTURE NOTES MATT FREDRIKSON


	Introduction
	Cache side channels
	Example: AES block cipher
	Plugging the leak: memory access as cost
	A cache-channel type system

	Meltdown
	Virtual address spaces
	Out-of-order execution
	Rogue memory access
	Fixing Meltdown


