Assignment 3: The Leaky Sandbox
15-316 Software Foundations of Security and Privacy

1. Leaky sandbox (25 points). Consider the following language, which resembles a simplified assembly
language.

add(z,y) Add variables = and y, store the result in z

sub(z,y) Subtract variable y from x, store the result in z

mul(z,y) Multiply variables z and y, store the result in =

and(z,y) Take the bitwise-and of variables x and y, store the result in z
or(z,y) Take the bitwise-or of variables x and y, store the result in x
not(z,y) Take the bitwise negation of variable x, store the result in x
ri=c Copy a constant ¢ into variable x

ri=y Copy the value stored in y to =

x = *(y) Read the memory at address stored in variable y, save result in x
*(x) =y Store the value in y at the address pointed to by x

if(Q) jumpa If Q is true in the current state, jump to the instruction pointed to by x

Programs in this language are sequences of instructions indexed on integers 0 to n, and we refer to the
instruction at index i of program « with the notation «;. Note that there are no expressions other than
constants and variables in this language. Instead, results of operations are stored in variables, and can
be moved into memory when necessary. Think of variables as acting like registers, so to implement the
computation w := (x&y) | z from our language in lecture we would write the program:

0: and(x,y)
1: or(z,z)
2: w:=vzx

Notably, the following are not examples of programs:

w := or(and(z,y),z) because and(x,y) and or(and(z,y), z) are not variables
add(z, 1) because 1 is not a variable
x(x+1):=y because x + 1 is not a variable

In each of these cases, the way to correctly express the desired computation would be to break the
program into multiple instructions, saving intermediate results in variables. For the third program,
this would give:

0: add(z,1)

1: *(x):=y

This should remind you of writing assembly code.

Note that just as you should assume that any memory reads outside the bounds of [0, U] will result
in an aborted trace, you should assume that any attempt to jump to an address outside the bounds of
[0, N), where N is the number of instructions in «, will also abort the trace.

Finally, you should assume that the integer values mapped by variables and memory addresses are
signed 64-bit machine integers, which means that they range from [—253,263 — 1], and that arithmetic
resulting in values outside this range will result in overflow. If you need a reminder on machine-integer
arithmetic, you should consult the “Bits, Bytes, & Integers” lecture from 15-213.

The sandbox. We want to implement a sandboxing policy for this language using software fault
isolation. So the proposal is to replace all memory read and write operations as follows. Assume
that s; = 0xb00 and s, = Oxbff, so the memory sandbox is contained in the range of addresses
0xb00 — Oxbff.

and(y, Oxbff)

x = *(y) becomes or(y, 0xb00)
= *(y)
and(xz, 0xbff)

*(z) =y becomes or(x, 0xb00)
*(z) =y

Additionally, we want to prevent jumps from leaving a code sandbox restricted to the range of instruc-
tion addresses 0xa00 — Oxaff, which is where the sandboxed program will be loaded prior to running
it. This is more challenging, as the instrumentation that was added to earlier instructions may have
changed the address of the original jump target.

To address this, we ensure that prior to running the sandboxed code, a jump table has been prepared at
memory addresses 0xc00 — Oxcff so that the contents of the jump table at address 0xc00 + = contain
the new address of the instruction originally located at z. So if the instruction at 0xa03 were moved
to 0xa05, then address 0xc03 will point to 0xa05.

So each indirect jump is rewritten as follows.

add(z, 0xc00)
d(x, 0xcff)
if(Q) jumpx becomes or(x,0xc00)
x = *(x)
if(Q) jump x

Example. Consider the following program which fills [memory addresses starting from b with zeros:
a00: ¢:=0

a0l: nc:=1
a02: cur:=b

0: 3:=0 a03: zero:=0

1: dnc:=1 a04: done:=9

2: cur:=b a05: add(done, 0xc00)
3: zero:=0 a06 : and(done, Oxcff)
4: done:=9 becomes a07 : or(done,0xc00)

5: if(i =) jump done a08: done:=*(done)

6: *(cur):=zero a09: if(i > 1) jump done
7: add(i, inc) ala: and(cur,Oxbff)

8: add(cur,inc) a0b: or(cur,0xb00)

9: alc: *(cur):= zero

a0d: add(i, inc)
ale : add(cur,inc)
aof :

The jump table will have the following contents:

Jump table address | cO0 c01 c01 <c03 c04 <c05 <c06 <cO7 c08 c09
contents a00 a0l a02 a03 a04 a09 alc a0d ale aOf

Part 1 (10 points).

Explain why this instrumentation is vulnerable to memory reads and writes outside the
memory sandbox, and provide an example program in the language that exploits violates
the policy. For full credit, your answer should provide the original program, its modified form after
performing the sandboxing operations described above, including instruction addresses, and the state
of the jump table when the sandboxed program runs. Be sure to explain in words how your example
results in a violation of the sandbox policy.

Solution.

Part 2 (15 points). Propose an alternative implementation in this language for the policy in Part
1 that is secure. Your solution should not introduce new operations to the language, and for full
credit, should only instrument memory reads and writes, and indirect jumps. That is, your
solution should not instrument arithmetic or bitwise instructions, or variable updates that only involve
constants and other variables.

You may assume that the program being sandboxed only uses a finite set of variables that are known
ahead of time by the sandbox designer; for example, an assumption that “the target program prior to
sandboxing will only make use of variables given by the first thirteen lower-case alphabet symbols” is
perfectly fine. To receive full credit, your solution should document the following:

e Be sure to clearly state any assumptions or invariants that your solution requires.

e Apply your solution to your exploit from Part 1, and explain why the sandbox policy is no longer
violated.

e Explain why you believe that your solution prevents not just your specific attack from Part 1, but
others like it as well.

Solution.

