
Assignment 4: The Highs and Lows of Information Flow
15-316 Software Foundations of Security and Privacy

1. Flow through abort (25 points).

In lecture, we defined non-interference in terms of a language that contains assignment, composition,
conditional statements, and while loops.

@ω1, ω2.ω1 «Γ,L ω2 ^ xω1, αy óω1
1 ^ xω2, αy óω1

2 Ñ ω1
1 «Γ,L ω

1
2 (1)

This definition depends on the relation «L, which says that two states are “low equivalent” whenever
their low-variables are the same.

ω1 «L ω2 if and only if @x.Γpxq “ L Ñ ω1pxq “ ω2pxq (2)

This question will develop an extention to this notion of noninterference that accounts for assertpP q

commands.

If our threat model allows an attacker to detect whether a trace of this program aborts, then the
attacker can learn information about the value of x by observing whether the final state is Λ or not.

Part 1 (5 points). Show how the following program leaks information labeled H to an observer who
can see whether the final state is Λ, as well as the initial and final values of L variables. You should
assume that the policy is Γpxq “ H,Γpyq “ L.

ifpy ‰ 0q tx :“ 2u else tassertpx “ 2qu

Your solution should provide two initial L-equivalent states, and explain how the observer learns infor-
mation about the H variables of the initial states from their observations.



Part 2 (5 points). Modify Equation 1 above to arrive at a formal definition of “abort-sensitive non-
interference”, which characterizes programs that do not leak information about H variables through
the L variables in final states, or through the program’s termination status (i.e., whether the final state
is Λ). Hint: the most straightforward way to complete this part may be to change the low-equivalence
relation «L to account for the error state Λ.

Part 3 (5 points). Provide a big-step semantics for the assertpQq command; your semantics should
match the trace semantics for assert given in prior lectures, in the sense that:

xω, assertpQqy ó ν if and only if pω, νq P JassertpQqK



Part 4 (10 points). Design a typing rule for assertpQq commands, and prove its soundness. In
other words, prove that if Γ $ assertpQq, then assertpQq satisfies your definition of failure-sensitive
non-interference under Γ.


