
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Propositional Logic and Proofs∗

Matt Fredrikson

Carnegie Mellon University
Lecture 2, 3

1 Introduction
Our foremost goal in this course is to prove that software systems obey security and
privacy policies. We will cover numerous different types of policies, but in general we
can think of a policy as a statement about what a program is allowed (or in some cases,
not allowed) to do. If we want to actually prove things about policies, then we need to
write them down precisely and in a way that allows us to use mathematical reasoning.
Propositional logic is a formal system that allows us to do this for a certain types of
simple policies.

For our purposes, propositional logic is a language for expressing statements (i.e.,
formulas) in terms of things that are either true or false (i.e., propositions) and a set of
rules, called semantics, for determining the truth value of a formula from the truth values
of its propositions. In future lectures, we will build on propositional logic to support
richer and more interesting types of policies.

In this lecture, we will study propositional logic and a deductive system called the
sequent calculus for proving the validity of propositional logic formulas. We will use the
sequent calculus throughout the semester as we discuss more complex and interesting
ways of proving that code is safe and secure. We will also study important properties of
the propositional sequent calculus, namely its soundness and completeness. A deductive
system is sound if it can only be used to prove true things. Likewise, a deductive system
is complete if any true statement can be proved using the system. Throughout the
semester, we will get into the habit of asking these sorts of questions about the systems
we study, as they have important practical ramifications for our ultimate goal of making
software secure.

∗Based on lecture notes written by André Plazter

https://15316-cmu.github.io/index.html

L2, 3.2 Propositional Logic and Proofs1

2 A stroll down memory lane: contracts
Thinking back to 15-122 Principles of Imperative Computation, recall that contracts
serve a valuable role in understanding programs. In 15-122, you made good use of
contracts to specify the assumptions that functions are allowed to make of their inputs,
as well as their intended behavior in terms of output values. Moreover, you learned
how to reason about the behavior of imperative code by writing informal proofs about
contracts, and were able to rely on dynamic checks to ensure that they weren’t violated
when running your code. In short, you learned that contracts are useful for making sure
that your code runs correctly.

You might be surprised to learn that contracts are tremendously useful for establish-
ing security as well. The Ironclad Apps [HHL+14] and Ironfleet [HHK+15] projects out
of Microsoft Research leveraged contracts and automated verification tools to build net-
worked applications and distributed systems with provable information flow, memory
safety, data privacy, and other security properties. However, we’ll refresh ourselves on
contracts using a much smaller example that doesn’t have much to do with security.
This should be more familiar, and will serve to illustrate the main ideas that motivate
our study of propositional logic.

Consider the following C0 code, which multiplies two numbers using only addition,
multiplication by 2, and division by 2.

1 int BinaryMult(int a, int b)
2 //@requires b >= 0;
3 //@ensures \result = a*b
4 {
5 int x=a;
6 int y=b;
7 int z=0;
8 while (y > 0)
9 //@loop_invariant 0 <= y && z + x * y = a * b;

10 {
11 if (y%2 == 1) {
12 z = z + x;
13 }
14 x = 2*x;
15 y = y/2;
16 }
17 return z;
18 }

This algorithm uses contracts, which is a good thing because it may not be totally
obvious that this procedure does what is claimed. Are they all correct? Are they easy
to follow? Is it enough to assume that b >= 0 holds at the beginning of the function to
ensure the postcondition? Does the postcondition follow easily from the loop invariant?

This is all quite exciting, but we don’t yet have the tools necessary to answer these
questions. The purpose of today’s lecture is not actually to get us back into specifying
or checking contracts of programs. Instead we’ll focus on the conditions in the contract
and try to understand exactly what they mean, and how we can reason about them.
Our reading in the 15-122 course was that the C0 contracts @requires, @ensures,

15-316 Lecture Notes Matt Fredrikson

http://www.cs.cmu.edu/~15122/

Propositional Logic and Proofs2 L2, 3.3

@loop_invariant and @assert just expect ordinary C0 expressions of type bool that
are being evaluated and need to come back with value true to successfully pass. But
what exactly does the expression \result mean in the @ensures postcondition? What
if the C0 expression in a contract calls a function that has the side effect of changing a
data structure? What exactly is the meaning of the && operator itself? Does it perform
short-circuit evaluation? What if an expression crashes or doesn’t terminate during
contract evaluation?

These are quite a number of subtle questions for something that we thought we had
already mastered as well as the contracts from Principles of Imperative Computation.

3 Propositional Logic
Maybe we should first take a step back and give the expressions within a contract a more
careful look to see how they can best be understood. We’ll start with propositional logic,
which will allow us to understand the basic logical connectives used in contracts. Once
we have a better understanding of these fundamentals, we will return to the interesting
questions raised in the example from before.

3.1 Syntax
The objects that we will study in propositional logic are called formulas, and are com-
posed of the following elements.

Atomic Propositions. The basic building blocks are propositions, which you can view as
variables that take Boolean (i.e., true/false) values. Some might find it helpful to
think of propositions as statements such as “The memory at address 0x00105f0
holds the value 10”, which are either true or false. However, we won’t bother
interpreting the meaning of such associations for now, and we’ll just denote atomic
propositions with lowercase letters and treat them as abstract statements that
could be either true or false.

Connectives. Propositional formulas may contain the connectives ¬,∧,∨,→,↔, which
are used to construct formulas from propositions and other formulas.

We define the ways in which propositions, connectives, and formulas can be syntacti-
cally combined by writing a grammar as shown in Figure 1.

Definition 1 (Syntax of propositional logic). The formulas F,G of propositional logic are
defined by the following grammar (where p is an atomic proposition):

F ::= ⊥ | ⊤ | p | ¬F | F ∧G | F ∨G | F → G | F ↔ G

In Definition 1, ⊥ and ⊤ stand for the constants false and true, respectively. The way
to read such a grammar is as follows:

• The Boolean constants ⊥ and ⊤ are formulas.

15-316 Lecture Notes Matt Fredrikson

L2, 3.4 Propositional Logic and Proofs3

• An atomic proposition (usually denoted p, q, r) is a formula.

• If F is a formula, then its negation ¬F is also a formula.

• If F and G are formulas, then the conjunction F ∧G, the disjunction F ∨G, the
implication F → G, and the bisubjunction F ↔ G are also formulas.

Parentheses are also allowed as needed to make precedence explicit. For example, this
is a propositional formula:

(p → q) ↔ (¬p ∨ q) (1)

We’ll use the following precedence on operators, from highest to lowest: ¬,∧,∨,→,↔.
We will also assume that → and ↔ associate to the right, so the following:

t ∧ p → q → r → s (2)

is equivalent to:
(t ∧ p) → (q → (r → s)) (3)

Parentheses are cumbersome, so we’ll avoid using them whenever possible.

4 Semantics
Writing down logical formulas that fit to the syntax of propositional logic is one thing,
but not particularly useful unless we also know whether the formulas true. We cannot
generally know whether the atomic propositions in a propositional logical formula are
true or false, because they are just called p, q, r, which does not tell us much about their
intention. But we can define some structure to help us out. Let’s fix a function I, called
the interpretation, that tells us the truth-value for each atomic proposition. So I(p) = ⊤
iff atomic proposition p is interpreted as true in interpretation I. For example, we could
fix the following interpretation for formula (1):

I = {q} (4)

By this notation, we mean the interpretation that satisfies I(q) = ⊤ and interprets all
other atomic propositions (i.e., just p in this case) as ⊥.

Having fixed an interpretation I for the atomic proposition, we can now easily evaluate
all propositional formulas to see whether they are true or false in that interpretation I
of atomic propositions, because the logical operators ∧,∨,¬,→,↔ always have exactly
the same meaning.

Definition 2 (Semantics of propositional logic). The propositional formula F is true in
interpretation I, written I |= F , as inductively defined by distinguishing the shape of
formula F :

1. I ̸|= ⊥, i.e., ⊥ is true in no interpretations

2. I |= ⊤, i.e., ⊤ is true in all interpretations

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs4 L2, 3.5

3. I |= p iff I(p) = ⊤ for atomic propositions p

4. I |= F ∧G iff I |= F and I |= G.

5. I |= F ∨G iff I |= F or I |= G.

6. I |= ¬F iff I ̸|= F , i.e. it is not the case that I |= F .

7. I |= F → G iff I ̸|= F or I |= G.

8. I |= F ↔ G iff both are true or both false, i.e., it is either the case that both I |= F
and I |= G or it is the case that I ̸|= F and I ̸|= G.

With this definition, it is easy to establish that formula (1) is true in interpretation
(4):

I |= (p → q) ↔ (¬p ∨ q)

For example, the evaluation of the right-hand side formula before the implication →
proceeds as follows:

I |= p → q because I ̸|= p because I(p) = ⊥

Now we can ask more interesting questions about formula (1) and others, like: is formula
(1) only true in this particular interpretation, or what happens with other interpretations
of p, q that assign different Boolean values?

The most exciting formulas are those that are true no matter what the interpretation
of the atomic propositions is. Such a formula is called valid because it expresses a
true property regardless of the specific interpretation of the atomic propositions. We
will also talk about satisfiable formulas, which are those for which there is at least one
interpretation that makes the formula true.

Definition 3 (Validity & Satisfiability). A formula F is called valid iff it is true in all
interpretations, i.e. I |= F for all interpretations I. Because any interpretation makes
valid formulas true, we also write ⊨ F iff formula F is valid. A formula F is called
satisfiable iff there is an interpretation I in which it is true, i.e. I |= F . Otherwise it is
called unsatisfiable.

You may wonder what exactly the relationship between satisfiability and validity is.
Most obviously, if F is valid then it is also satisfiable; likewise, if F is unsatisfiable then
it is certainly not valid. But there is more to this connection. Suppose that F is valid,
so for any interpretation I |= F . By the semantics of negation, I ̸|= ¬F , so it must be
the case that ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. Then
for any interpretation I, I ̸|= ¬F , and by the semantics of negation I |= F . So F is valid
whenever ¬F is unsatisfiable.

In this sense, satisfiability and validity are duals of eachother, and a statement about
the validity (resp. satisfiability) of a formula is also one about the satisfiability (resp.
validity) of its negation. To make this explicit, we can summarize by saying F is valid
if and only if ¬F is unsatisfiable.

15-316 Lecture Notes Matt Fredrikson

L2, 3.6 Propositional Logic and Proofs5

It is not difficult to imagine how we might decide whether a propositional formula is
valid; we simply try all interpretations of the atomic propositions, using the semantics
to decide whether the formula is true. Let’s tabulate our results for Eq. 1 by writing
down each combination of truth-values for all atomic propositions and evaluating all
subformulas of (1) according to their semantics.

p q p → q ¬p ¬p ∨ q (1)
⊤ ⊤ ⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊥ ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊥ ⊤ ⊤ ⊤ ⊤

Indeed, the truth-value of the formula (1) is ⊤ in all interpretations, thus, (1) is valid:

⊨ (p → q) ↔ (¬p ∨ q)

The only downside is all this busywork to evaluate all interpretations, which is exponen-
tial in the number of atomic propositions and incredibly boring on top of that.

5 Proofs for Propositional Logic
Brute-force evaluating a formula in all possible interpretations is certainly one way of
establishing that a propositional logical formula is valid, but it always requires expo-
nential effort and is quite uninsightful, because it does not even attempt to provide a
comprehensible reason for the validity of the formula. The only way to check that a
truth table is constructed correctly for a formula is to check that it enumerates all cases
of interpretations and all its computations of truth-values are according to the semantics
and that, indeed, ⊤ is the outcome in all cases. Possible but incredibly dull. Besides,
this finite enumeration principle cannot work for the more interesting and expressive
logics that we will use to describe security properties in subsequent lectures.

The semantics considered one operator at a time. Let’s try to make the same thing
happen for proofs as well. What about a proof of a conjunction F ∧ G? A proof of a
conjunction F ∧G should consist of a proof of the left conjunct F together with a proof
of the right conjunct G, because both proofs together prove the conjunction F ∧G. So
stapling a proof of F together with a proof of G will give us a proof of F ∧G. That was
easy enough.

But what does a proof of an implication F → G consist of? It certainly isn’t a proof
of F together with a proof of G anymore. A proof of G would constitute a proof of
F → G, but such a proof is missing out on an important power. It would have been
allowed to assume F , because the formula F → G only says that F implies G, so that
G is true in case F is. If F isn’t true, then the implication F → G doesn’t say anything
about whether G is true or not. Consequently, an unconditional proof of G certainly
does establish F → G, but is a bit much to ask for. The proof of F → G should, instead,
consist of a proof of G that is allowed to assume F . This requires the capability to

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs6 L2, 3.7

manage assumptions in a proof, which, retrospectively, should not actually come as a
surprise.

For managing assumptions in a structured way, we will follow in the footsteps of
Gerhard Gentzen [Gen35], who introduced sequent calculus for the study of logic. But
it turns out that sequent calculi are also immensely useful not just for understanding
logical reasoning, but also for organizing and conducting proofs without risking to lose
track of assumptions.

5.1 Simple Sequents
The first kind of sequent that we will consider is of the form:

Γ ⊢ F

The available assumptions are given as a list of formulas Γ as antecedent and with the
formula we want to prove from them as F, the succedent. The symbol ⊢ is called sequent
turnstile and separates the available assumptions from what we try to prove from them.

There are some sequents where we are obviously done with a proof. For example when
literally the same formula F is in the antecedent and the succedent, because F easily
follows when assuming F . So the sequent Γ, F ⊢ F has a trivial proof. We will later
capture this thought with a proof rule id, but first consider proofs for the operators
we’ve already seen.

Coming back to conjunctions, proving a conjunction F ∧ G requires proving F and
proving G. This fact does not change when working from a list of assumptions Γ.

(∧R)
Γ ⊢ F Γ ⊢ G

Γ ⊢ F ∧G

This proof rule ∧R expresses that all it takes to prove the conclusion Γ ⊢ F ∧G below
the rule bar is to prove all the premises Γ ⊢ F and Γ ⊢ G above the rule bar. In the
proof of the left premise Γ ⊢ F , the same assumptions Γ will still be available that were
available in the conclusion Γ ⊢ F ∧G. And likewise for the right premise.

Proving an implication F → G, with which we had difficulties before, now simply
allows us to add the assumption F to the antecedent with the list of all available as-
sumptions and continue a proof of G from this augmented list of assumptions:

(→R)
Γ, F ⊢ G

Γ ⊢ F → G

Reading the rule →R from bottom to top means that a proof of an implication F → G
from a list of assumptions Γ requires us to prove G from the assumptions Γ together
with F .

Proving a disjunction F ∨G is more subtle. How do we prove a disjunction? We could
prove a disjunction F ∨G by proving the left disjunct F :

(∨R1)
Γ ⊢ F

Γ ⊢ F ∨G

15-316 Lecture Notes Matt Fredrikson

L2, 3.8 Propositional Logic and Proofs7

That works. But then what if the disjunction F ∨ G is true because the right disjunct
G is true? Well, we could adopt yet another proof rule for disjunction that shows the
right disjunct instead:

(∨R2)
Γ ⊢ G

Γ ⊢ F ∨G

This would give us a pair of proof rules ∨R1 and ∨R2 to prove disjunctions. But we
will have to choose at the time of proving the disjunction F ∨ G whether we prove it
by proving its left disjunct F with rule ∨R1 or whether we prove it by proving its right
disjunct G with rule ∨R2. That requires a lot of attention when proving disjunctions.
Worse yet: will we always be able to tell which disjunct we will be able to prove?

In many cases, we will be able to predict which disjunct will suffice for proof if we think
ahead very carefully. But that is already not particularly helpful and convenient. Worse
yet, there are cases where, for principle reasons, we will be unable to predict which
disjunct of a disjunction we will prove! Suppose we are trying to prove the formula
p∨¬p, which is certainly valid, because it will evaluate to ⊤ whether or not the atomic
proposition p is interpreted to be ⊤. But when trying to prove the law of excluded
middle p ∨ ¬p, neither rule ∨R1 nor rule ∨R2 will succeed because the whole point of
the law of excluded middle is that it will evaluate to ⊤ whether p is ⊤ or ⊥ (so ¬p is
⊤), but we cannot generally say ahead of time which side will be ⊤.

Instead, what we are going to do is to keep our options open. We will record in the
sequent the fact that formulas F as well as G were both available as formulas for us to
prove when proving the disjunction F ∨ G by keeping both as a list on the right-hand
side of the sequent turnstile ⊢. Of course, we might have already gathered other options
that we could prove, so the disjunction proof rule is:

(∨R)
Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆

Proving a disjunction F ∨ G from a list of assumptions Γ with a list of alternatives ∆
works by splitting the disjunction into its two options F and G and continuing with a
proof of the alternatives F,G,∆ from the assumptions Γ.

5.2 Sequent Calculus
To manifest this, let’s properly define what a sequent Γ ⊢ ∆ is and what it means.

Definition 4 (Sequent). A sequent Γ ⊢ ∆ organizes the reasoning into a list Γ of formulas
available as assumptions, called antecedent, and a list ∆ called succedent. The semantics
of sequent Γ ⊢ ∆ is the same as that of the formula(∧

F∈Γ
F

)
→

(∨
G∈∆

G

)

In particular, proving a sequent Γ ⊢ ∆ requires proving that the disjunction of all
succedent formulas ∆ is implied by the conjunction of all antecedent formulas Γ. For

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs8 L2, 3.9

proving a sequent Γ ⊢ ∆, we can, thus, assume all formulas in Γ and need to show one
of the formulas in ∆, or at least show their disjunction.

This list ∆ of alternatives to prove is simply preserved in the proof rules we saw so
far:

(∧R)
Γ ⊢ F,∆ Γ ⊢ G,∆

Γ ⊢ F ∧G,∆

(→R)
Γ, F ⊢ G,∆

Γ ⊢ F → G,∆

(∨R)
Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆

For example in rule ∧R, the same succedent ∆ is still available in both premises,
because a proof of ∆ from the assumptions Γ in either premise would also prove ∆ from
the assumptions Γ in the conclusion.

How do we prove a bisubjunction P ↔ Q? Going back to the semanatics, we see that
bisubjunction is really like two implications P → Q, Q → P joined with a conjunction.
This gives us the rule ↔R.

(↔R)
Γ ⊢ F → G,∆ Γ ⊢ G → F,∆

Γ ⊢ F ↔ G,∆

Finally, we can prove a negation ¬F by assuming the converse F and going for a
contradiction. In fact, since we may have already gathered a number of other alternatives
∆ to prove, all we need to do to prove ¬F from a list of assumptions Γ with a list of
alternatives ∆ is to prove the remaining alternatives ∆ from assuming Γ as well as the
opposite F :

(¬R)
Γ, F ⊢ ∆

Γ ⊢ ¬F,∆
Does this list of rules handle all operators? There’s one rule per operator, which is

a good thing. The catch is that there’s really only one rule per operator so far. If the
operators occur on the right, so in the succedent, then the respective proof rules tell us
what to do. But the implication proof rule →R is good about pushing assumptions into
the antecedent. What if it pushes a conjunction F ∧G into the antecedent? Is there a
proof rule to handle what happens then?

Not yet. But there should be a rule for handling the case where there’s a conjunction
F ∧G among the list of assumptions in the antecedent. In fact, for every logical operator,
there should be a right proof rule handling the case where it is the top-level operator on
the right in the succedent as well as a left proof rule handling when it appears on the
left in the antecedent.

15-316 Lecture Notes Matt Fredrikson

L2, 3.10 Propositional Logic and Proofs9

5.3 Left Rules
When we find a conjunction F ∧G among the list of assumptions in the antecedent, then
we can safely split it into two separate assumptions F as well as G:

(∧L)
Γ, F,G ⊢ ∆

Γ, F ∧G ⊢ ∆

Proving a sequent that has a conjunction F ∧G among its assumptions in the antecedent
is the same as proving it with two separate assumptions F as well as G instead.

What happens when we have a disjunction F ∨ G among our assumptions in the
antecedent? In that case we have no way of knowing whether F or whether G is true.
All we know is that either of them is. But we still succeed with a proof if we manage to
show the sequent both when assuming F as well as when, instead, assuming G, because
while either are possible, the assumption F ∨ G implies that one of those cases has to
apply.

(∨L)
Γ, F ⊢ ∆ Γ, G ⊢ ∆

Γ, F ∨G ⊢ ∆

When an implication F → G is among the assumptions in the antecedent, then we
can make use of that assumption by showing its respective assumption F and can then
assume G instead. If we can assume F → G and show F then we can assume G:

(→L)
Γ ⊢ F,∆ Γ, G ⊢ ∆

Γ, F → G ⊢ ∆

Wait a moment. The left premise does not actually show F from the assumptions
Γ, because it only shows the succedent F,∆ which is interpreted disjunctively. So it
is possible that the left premise does not show F but merely ∆. But in that case,
the conclusion is justified as well, because it also has the antecedent ∆ as the list of
alternatives to show.

We leave the left rule for the operator ↔ as an exercise, so the only remaining case
is to handle a negation ¬F among the assumptions in the antecedent. If we assume ¬F
then it is also sufficient if we can show the opposite F (recall the semantics of sequents):

(¬L)
Γ ⊢ F,∆

Γ,¬F ⊢ ∆

To understand, we can first pretend there would be no succedent ∆. What happens if
there is no succedent? Then the empty disjunction that it means is equivalent to the
formula ⊥ that is never true in any interpretation. In that special case, rule ¬L says
that for proving a contradiction ⊥ from assumptions ∆ and ¬F , it is sufficient to prove
the opposite F from the remaining assumptions Γ.

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs10 L2, 3.11

5.4 Closing and Forking
The above proof rules excel at splitting operators off of propositional logical formulas.
But they never actually prove anything on their own except simplifying all formulas until
only atomic propositions are left. What is missing is the observation that a sequent can
be proved easily when the same formula F is in the antecedent and succedent with the
identity proof rule called id:

(id)
Γ, F ⊢ F,∆

Whenever we find the same formula F in the antecedent and succedent, we can use
rule id to prove that sequent without any further questions (no premise, i.e. no more
remaining subgoals).

Another insightful proof rule is the cut proof rule, which enables us to first prove an
arbitrary formula C on the left premise and then assume C on the right premise.

(cut)
Γ ⊢ C,∆ Γ, C ⊢ ∆

Γ ⊢ ∆

Think of C as a lemma that is proved in the left premise and then assumed to hold in
the right premise. The twist is again that the left premise does not necessarily prove
C but might also settle for proving another alternative in the remaining succedent ∆,
but that also establishes the succedent ∆ of the conclusion. The primary purpose of
the cut rule is for ingenious theoretical studies of reasoning [Gen35] as well as to find
clever shortcuts in practical proofs by first proving a lemma C that subsequently helps
multiple times in the remaining proof. It plays a crucial role in constructive logics, too.

All these sequent calculus proof rules are sound, that is, if all their premises are valid,
then their conclusion is valid. Especially if there are no premises any more because we
were able to use the identity proof rule id on all premises, then the conclusion is valid,
which is what we were hoping to achieve with a proof.

5.5 Conducting Sequent Calculus Proofs
As an example, let’s prove formula (1). Sequent calculus proofs are conducted in a bit
of a funny way by starting with the conjecture at the bottom

⊢ (p → q) ↔ (¬p ∨ q)

and then working our way upwards by applying proof rules to the remaining sequents.
The reason why we work like that is that in (sound!) sequent calculus proof rules validity
of all premises implies validity of the conclusion. So if we start with our conjecture at
the bottom and work our way upwards, then if we are able to prove all premises then
the conclusion at the bottom will be valid, too. We apply sequent calculus rules from
the bottom to the top but, when a proof is done, their soundness makes validity inherit
from the top to the bottom.

15-316 Lecture Notes Matt Fredrikson

L2, 3.12 Propositional Logic and Proofs11

(∧R)
Γ ⊢ F,∆ Γ ⊢ G,∆

Γ ⊢ F ∧G,∆

(∨R)
Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆

(→R)
Γ, F ⊢ G,∆

Γ ⊢ F → G,∆

(¬R)
Γ, F ⊢ ∆

Γ ⊢ ¬F,∆

(id)
Γ, F ⊢ F,∆

(⊥L)
Γ,⊥ ⊢ ∆

(∧L)
Γ, F,G ⊢ ∆

Γ, F ∧G ⊢ ∆

(∨L)
Γ, F ⊢ ∆ Γ, G ⊢ ∆

Γ, F ∨G ⊢ ∆

(→L)
Γ ⊢ F,∆ Γ, G ⊢ ∆

Γ, F → G ⊢ ∆

(¬L)
Γ ⊢ F,∆

Γ,¬F ⊢ ∆

(cut)
Γ ⊢ C,∆ Γ, C ⊢ ∆

Γ ⊢ ∆

(⊤R)
Γ ⊢ ⊤,∆

Figure 1: Sequent calculus proof rules for propositional logic

Enough said. Let’s prove formula (1) in sequent calculus:

∗
idp ⊢ p, q

∗
idq, p ⊢ q

→L p → q, p ⊢ q
¬R p → q ⊢ ¬p, q
∨R p → q ⊢ ¬p ∨ q
→R ⊢ (p → q) → ¬p ∨ q

∗
id p ⊢ p, q
¬L¬p, p ⊢ q

∗
idq, p ⊢ q

∨L ¬p ∨ q, p ⊢ q
→R ¬p ∨ q ⊢ p → q
→R ⊢ ¬p ∨ q → p → q

↔R ⊢ (p → q) ↔ (¬p ∨ q)

6 Soundness
Having conducted a sequent calculus proof, the most pressing question is what a proof
proves. Of course, as we already alluded to before, a proof in a sound deductive system
implies the validity of the conclusion.

Definition 5 (Soundness of a proof rule). A sequent calculus proof rule

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is sound iff the validity of all premises implies the validity of the conclusion:

if ⊨ (Γ1 ⊢ ∆1) and . . . and ⊨ (Γn ⊢ ∆n) then ⊨ (Γ ⊢ ∆)

Recall from Def. 4 that the meaning of the sequent Γ ⊢ ∆ is the same as that of the
formula

(∧
F∈Γ F

)
→
(∨

G∈∆G
)
.

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs12 L2, 3.13

Lemma 6 (Soundness of propositional logic proof rules). All propositional logic proof
rules (summarized again in Fig. 1), are sound.

Proof. It is crucial to prove soundness for all proof rules. We will, nevertheless, only
prove it for one rule and leave the others as exercises. But we will prove that rule with
exceeding care.

∧R That proof rule ∧R is sound can be shown as follows. Assume that both of its
premises Γ ⊢ F,∆ and Γ ⊢ G,∆ are valid, i.e. both (

∧
F∈Γ F) → F ∨(

∨
G∈∆G) and

(
∧

F∈Γ F) → G ∨ (
∨

G∈∆G) are true in all interpretations. We need to show that
the conclusion Γ ⊢ F ∧G,∆ is then also valid, i.e. ⊨ (Γ ⊢ F ∧G,∆), which means
that (

∧
F∈Γ F) → (F ∧G) ∨ (

∨
G∈∆G) is true in all interpretations. Consider any

interpretation I and show that I |= (
∧

F∈Γ F) → (F ∧G) ∨ (
∨

G∈∆G). If any of
the antecedent formulas F ∈ Γ is false in I (I ̸|= F) or any of the remaining succe-
dent formulas G ∈ ∆ is true (I |= G), then I |= (

∧
F∈Γ F) → (F ∧G) ∨ (

∨
G∈∆G).

Otherwise, all antecedent formulas in Γ are true I |=
∧

F∈Γ F and all ∆ formulas
are false I ̸|=

∨
G∈ΓG.

By premise, I |= (
∧

F∈Γ F) → F ∨ (
∨

G∈∆G) and I |= (
∧

F∈Γ F) → G ∨ (
∨

G∈∆G).
Since antecedents in Γ are true and succedents in ∆ false in I, this implies I |= F
and I |= G. By Def. 2, these imply I |= F ∧G, which implies that the conclusion
is true in I, i.e. I |= (

∧
F∈Γ F) → (F ∧G) ∨ (

∨
G∈∆G).

In fact, the prelude of the soundness argument is common to all proof rules so that one
usually just assumes right away without loss of generality that the common antecedent
Γ is true while the common succedent ∆ false in the current interpretation I.

Now that all proof rules of propositional logic are sound it is easy to see that the whole
proof calculus is sound, because a proof is entirely built by applying sound proof rules
so validity of all premises (of which there are none in a completed proof) implies validity
of the conclusion. Because this is so important and we want to practice the important
proof principle of induction, we will show this explicitly.

Theorem 7 (Soundness of propositional logic). The sequent calculus of propositional
logic is sound, i.e. it only proves valid formulas. That is, if ⊢ F has a proof in the
propositional sequent calculus, then F is valid, i.e. ⊨ F .

Proof. What we need to show is that if ⊢ F is the conclusion of a completed sequent
calculus proof, then F is valid, i.e. ⊨ F . A proof of the sequent ⊢ F will consist of
proofs of sequents of the more general shape Γ ⊢ ∆. So we instead prove the more general
statement that a proof of Γ ⊢ ∆ implies ⊨ (Γ ⊢ ∆). We will prove this by induction on
the structure of the proof. That is, we will prove it for the smallest possible proofs. And
then, assuming that the proofs of the smaller pieces of a proof have valid conclusions,
we will show that one more proof step preserves validity.

1. The only proofs with just 1 proof step are of the form

id
∗

Γ, F ⊢ F,∆

15-316 Lecture Notes Matt Fredrikson

L2, 3.14 Propositional Logic and Proofs13

Its conclusion is valid, because assumption F in the antecedent trivially implies F
in the succedent.

2. Consider any proof ending with a proof step of this form:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆
(5)

By induction hypothesis, we can assume that the (smaller!) proofs of the premises
Γ1 ⊢ ∆1 and …Γn ⊢ ∆n already imply the validity of their respective conclusions
so ⊨ (Γ1 ⊢ ∆1) and …⊨ (Γn ⊢ ∆n).
The proof rule used in the proof step (5) must have been one of the proof rules of
the sequent calculus of propositional logic. All these sequent calculus proof rules
of propositional logic are sound by Lemma 6. Consequently, ⊨ (Γ ⊢ ∆), so the
conclusion of the proof (5) is valid.

6.1 Soundness by derivation
The approach that we just learned for proving that an inference rule is sound can be used
widely to introduce new rules into our system of deduction. If we are careful about our
semantic arguments, and ultimately successful in proving that the rule is sound, then we
can safely use it along with the existing rules to make sound deductions; this is exactly
what Theorem 7 tells us. However, there is another way to show that an inference rule is
sound, by using the rules that we already know to be sound in a formal sequent calculus
proof. We will refer to rules that we can prove in this way as derived rules, and in many
cases, their proofs give a more concise illustration of the logical principles at work.

To show how this works, we will construct a rule that captures one sense of DeMorgan’s
law, which you may already be familiar with.

(demo)
Γ ⊢ ¬F,∆ Γ ⊢ ¬G,∆

Γ ⊢ ¬(F ∨G),∆

To prove that this is sound by derivation, we set out to prove the sequent Γ ⊢ ¬(F ∨G),∆.
However, this sequent is not valid, so we will not be able to close out all branches of
the proof by reducting to id. Rather, we will stop when we have closed out all branches
except for two that containin the sequents Γ ⊢ ¬F,∆ and Γ ⊢ ¬G,∆. A little bit of
thought should convince you that this is perfectly fine, because if we intend to use this
rule in a proof, that is exactly what we would need to be able to prove if we applied
DeMorgan’s!

Γ ⊢ ¬G,∆
¬LΓ, G ⊢ ∆

Γ ⊢ ¬F,∆
¬LΓ, F ⊢ ∆

∨L Γ, F ∨G ⊢ ∆
¬R Γ ⊢ ¬(F ∨G),∆

To reiterate, we do not need to take this proof any further, because the two unclosed
branches contain exactly the premises of the demo rule that we set out to prove. Because

15-316 Lecture Notes Matt Fredrikson

Propositional Logic and Proofs14 L2, 3.15

we already know that ¬L, ∨L, and ¬R are sound, and that combining them in arbitrary
order on any set of formulas is also sound, we can conclude that the rule demo must
indeed be sound: the validity of its premises imply the validity of its conclusion.

6.2 Completeness
Soundness is one thing, and most crucial for any correct reasoning. But since proposi-
tional logic is so simple, it enjoys other pleasant properties. It is also the case that every
valid propositional logic formula will be provable from the sequent calculus proof rules
in Fig. 1, which is called completeness.

Theorem 8 (Completeness of propositional logic). The sequent calculus of propositional
logic is complete, i.e. it proves all valid formulas. That is, if F is valid, so ⊨ F then ⊢ F
has a proof in the propositional sequent calculus.

In fact, because propositional logic is so simple, it is perfectly decidable whether
a propositional logical formula is valid. You already knew this, however, because we
discussed an effective procedure for deciding propositional validity—truth tables.

Theorem 9 (Decidability of propositional logic). Propositional logic is decidable, i.e. there
is an algorithm that accepts any propositional logical formula as input and correctly
outputs “valid” or “not valid” in finite time.

References
[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Math.

Zeit., 39(2):176–210, 1935.
[HHK+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving
practical distributed systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles, 2015.

[HHL+14] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. Ironclad apps: End-to-end security via au-
tomated full-system verification. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation, 2014.

15-316 Lecture Notes Matt Fredrikson

	Introduction
	A stroll down memory lane: contracts
	Propositional Logic
	Syntax

	Semantics
	Proofs for Propositional Logic
	Simple Sequents
	Sequent Calculus
	Left Rules
	Closing and Forking
	Conducting Sequent Calculus Proofs

	Soundness
	Soundness by derivation
	Completeness

