
Assignment 2: Dynamic Logic
15-316 Software Foundations of Security and Privacy

1. Arbitrary conditions (25 points). Sometimes when modeling a computation, we need to avoid
making assumptions about what exactly might transpire at runtime. For example, suppose that we
wish to write a program that accepts user input, and branches on the value that they provide. Because
there is no way of knowing what the user will do advance, a safety analysis needs to cover all possible
cases. Nondeterminism is the appropriate way to handle cases like this.

Part 1 (5 points). Extend the language discussed in lecture by defining the semantics of a nondeter-
ministic branching command, ifp˚qα elseβ. Informally, this command arbitrarily selects either
α or β to run; the choice does not depend on the state in which the command is executed.
Solution.

Part 2 (10 points). Design an axiom that allows you to reason about box modalities around nonde-
terministic branches:

rifp˚qα elseβsppxq Ø . . .

The right side of this equivalence should not contain a box or diamond modality, but only first-
order formulas. Prove that your axiom is valid using your semantics from Part 1.
Solution.



Part 3 (10 points). Suppose that two programs α and β are identical in every way, except that all
of the branches in β are nondeterministic, and all of those in α are deterministic. For example,
the following programs would match this description:

α ” x :“ 1; ifpy ă 0q z :“ y else z :“ ´y

β ” x :“ 1; ifp˚q z :“ y else z :“ ´y

If β satisfies a given safety property Φ, then will α necessarily satisfy it as well? Likewise, if α
satisfies Φ, then must β? For both questions, if you believe that both will satisfy Φ, then use your
semantics from Part 1 and the definition of safety properties to justify your example. Otherwise,
provide a counterexample set of α, β, and Φ where only one of α, β satisfy Φ.
Solution.



2. Verified safety (15 points). In the previous homework, you looked for ways to exploit a flawed
runtime memory safety monitor. Recall that the safety policy aimed to ensure that a given program
cannot write outside the range 0x800300–0x8003FF (inclusive). Another way to enforce this policy is
to verify that the program will not write outside the bounds, before executing it; this removes the need
for any runtime monitors.
However, non-determinism arising from inputs that are unknown before execution can pose a chal-
lenge. Consider the program α below, which uses both non-deterministic branching, as well as non-
deterministic assignment.

α ” s :“ ˚; ifp˚q tp :“ p ` su else tassertpfalsequ

The assert command serves to signal an exception when the policy is violated. You should understand
the non-deterministic assignment as updating the state by mapping the target variable to an arbitrary
integer. The following axiom characterizes its behavior:

rx :“ ˚sppxq Ø @x.ppxq

Part 1 (5 points). Explain why the following formula is not valid by giving a trace of α that violates
the safety policy.

0x8000300 ď p ď 0x8000400 Ñ rαs0x8000300 ď p ď 0x8000400

Solution.



Part 2 (10 points). Identify an expression e to place in the conditional (i.e., a branch condition that
removes the non-determinism from the if) that will make the program satisfy the safety policy.
Is the formula from Part 1 now valid with your fix? If so, provide a sequent deduction using the
axioms of dynamic logic. If not, then identify the premise in an attempted sequent deduction that
is not valid.
Solution.


