
Assignment 2: Dynamic Logic
15-316 Software Foundations of Security and Privacy

1. Structured chaos (25 points). Sometimes when modeling a computation, we need to avoid making
assumptions about what exactly might transpire at runtime. For example, suppose that we wish to
write a program that accepts alphanumeric user input for further processing. We don’t know exactly
what the user will type, but we do know that it will be a string of characters drawn from the set
ta, . . . , z, A, . . . , Z, 0, . . . , 9u. The way to model this situation formally is using nondeterminism with
constraints. In this problem, we will explore how to do this in dynamic logic.

Part 1 (10 points). Extend the language discussed in lecture by defining the semantics of a con-
strained nondeterministic assignment command, x :“ Qpxq. Informally, this command should
nondeterministically assign a value to x that satisfies the formula Qpxq. Here, the notation Qpxq

means that Q is a formula with a free variable x. For example, after running x :“ x ą y, the vari-
able x could be assigned any integer greater than y in the current state. If Qpxq is not satisfiable,
e.g. if Qpxq is equivalent to x ă 0 ^ x ą 0, then the command should not enter any final state
(i.e., should not terminate).

Solution.



Part 2 (15 points). Design an axiom that allows you to reason about box modalities around nonde-
terministic branches:

rx :“ Qpxqsppxq Ø . . .

The right side of this equivalence should not contain a box or diamond modality, but only first-
order formulas. Prove that your axiom is valid using your semantics from Part 1.

Solution.



2. Verified safety (15 points). In the previous homework, you looked for ways to exploit a flawed
runtime memory safety monitor. Recall that the safety policy aimed to ensure that a given program
cannot write outside the range 0x800300–0x8003FF (inclusive). Another way to enforce this policy is
to verify that the program will not write outside the bounds, before executing it; this removes the need
for any runtime monitors.

However, non-determinism arising from inputs that are unknown before execution can pose a challenge.
Consider the program α below.

α ” s :“ s ě 0 _ s ă 0; p :“ p ` s

Part 1 (5 points). Explain why the following formula is not valid by giving a trace of α that violates
the safety policy.

0x8000300 ď p ď 0x8000400 Ñ rαs0x8000300 ď p ď 0x8000400

Your trace should be given as a sequence of states that show the values of s and p at each step.
The easiest way to format this is as a table, e.g.:

s p
Initial state . . . . . .
...

...
...

Solution.



Part 2 (10 points). Identify a formula Qpsq to replace the nondeterministic assignment in α with
that will make the program satisfy the safety policy. Is the formula from Part 1 now valid with
your fix? If so, provide a sequent deduction using the axioms of dynamic logic. If not, then
identify the premise in an attempted sequent deduction that is not valid.

Solution.


