
Assignment 5: The Highs and Lows of Information Flow
15-316 Software Foundations of Security and Privacy

1. Flow through abort (25 points).

In lecture, we defined non-interference in terms of a language that contains assignment, composition,
conditional statements, and while loops.

@ω1, ω2.ω1 «Γ,L ω2 ^ xω1, αy óω1
1 ^ xω2, αy óω1

2 Ñ ω1
1 «Γ,L ω

1
2 (1)

This definition depends on the relation «L, which says that two states are “low equivalent” whenever
their low-variables are the same.

ω1 «L ω2 if and only if @x.Γpxq “ L Ñ ω1pxq “ ω2pxq (2)

This question will develop an extention to this notion of noninterference that accounts for assertpP q

commands.

If our threat model allows an attacker to detect whether a trace of this program aborts, then the
attacker can learn information about the value of x by observing whether the final state is Λ or not.

xω, P y óB true

xω, assertpP qy óB ω

xω, P y óB false

xω, assertpP qy óB Λ

Part 1 (5 points). Show how the following program leaks information labeled H to an observer who
can see whether the final state is Λ, as well as the initial and final values of L variables. You should
assume that the policy is Γpxq “ H,Γpyq “ L.

ifpy ‰ 0q tx :“ 2u else tassertpx “ 2qu

Your solution should provide two initial L-equivalent states, and explain how the observer learns infor-
mation about the H variables of the initial states from their observations.



Part 2 (10 points). Modify Equations 1 and 2 above to arrive at a formal definition of “abort-
sensitive non-interference”, which characterizes programs that do not leak information about H variables
through the L variables in final states, or through the program’s termination status (i.e., whether the
final state is Λ).

Note: depending on your solution, you may only need to modify one of Eqs 1 and 2. If so, just state
that the other equation is unchanged.

Part 3 (10 points). Design a typing rule for assertpQq commands, and explain why it is sound
with respect to your answer to Part 2. You do not need to provide a proof, but if you wish to, then be
sure to first define the big-step semantics of assert.



2. Dynamic pitfalls (15 points). While the static type system studied in class may reject some
programs that satisfy noninterference, it is sound: it will never accept a program that violates the
policy. An often-raised proposal for mitigating some of the “false” rejections, i.e., cases where the type
system unnecessarily rejects a program, is to track information flow dynamically at runtime while still
preserving soundness.

One such approach resembles taint analysis. The runtime monitor keeps track of the security label
of each variable, raising and lowering variables’ labels depending on what is assigned to them as the
program executes. It also tracks the label of the program counter, to make sure that implicit flows
can be prevented. When an assignment occurs inside of a conditional or loop, the label of the target
variable is set to the least upper-bound of the program counter’s label and the label of the assignments
right hand side. When the program finishes executing, we assume that an attacker can see the values
only of variables that are tracked with label L when the program terminates.

So for example, under the initial policy Γ “ rx : L, y : Hs, the following program would terminate with
both x and y marked as label L because y is overwritten by a constant:

y :“ 0;x :“ y

Accordingly, both of their final values would be observable by an attacker, because the monitor labels
them as L when the program terminates.

Show why this enforcement mechanism is unsound by giving an example of a program that violates
the policy Γ “ rx : L, y : Hs by leaking information about y when it is run under this mechanism.


