
Assignment 2
Dynamic Logic

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Due Tuesday, September 17, 2024
80 points

Your solution should be handed in as file hw2.pdf to Gradescope. If at all possible, write your
solution in LATEX. The handout hw2-dl.zip includes the LATEX sources for Lectures 3 and 4 and
the necessary style files which provide some examples for rules, derivations, and proofs.

1 Skip (15 points)

In this problem we consider adding a new program skip to the language already containing
assert P (that is, unsafe behavior). skip does nothing, like a “nop” instruction in assembly lan-
guage. For example, we can write a trivial nonterminating loop as while ⊤ skip.

Task 1 (2 pts) Give a semantic definition of ωJskipKν.

Task 2 (2 pts) Give a semantic definition of ωJskipK .

Task 3 (2 pts) Give a valid axiom characterizing skip in the form [skip]Q ↔ ??. Your task is to fill
in “??”. You do not need to prove the validity of your axiom.

Task 4 (2 pts) Assuming the validity of your axiom, write out right ([skip]R) and left ([skip]L)
rules for skip in the sequent calculus.

Task 5 (5 pts) Using the right and left rules for sequential composition ([;]R and [;]L) and your
own rules from the previous task, prove that

· ⊢ [skip ; α]Q ↔ [α]Q

(using the general definition of P1 ↔ P2 ≜ (P1 → P2) ∧ (P2 → P1)). Do not use a semantic
argument.

We define that two programs α and β are equivalent if they have the same meaning, that is,

(ωJαKν iff ωJβKν) and (ωJαK iff ωJβK )

Task 6 (2 pts) Give two different programs (using disjoint constructs) that are equivalent to skip.
You do not need to prove the equivalences.

ASSIGNMENTS DUE TUE, SEP 17, 2024



Homework 2 A2.2

2 For Loops (65 points)

The general form of while loops and the absence of explicitly given loop invariants can make it
difficult to prove safety properties. In this problem you will consider for loops that have a more
restricted pattern of iteration, possibly making it easier to prove safety.

We give an informal description of our kind of for loops and your task will be to formalize
and prove some properties of it. We use the syntax

for 0 ≤ i < n do α

The loop body α may depend on the variables i and n (which must be different variables), but α
may not assign to i or n. You should assume these properties are checked by the parser and your
answers below can depend on them.

The for loop above executes as follows:

1. If n < 0, the construct is considered unsafe.

2. Execute α for i = 0, 1, . . . , n− 1 in this order. If n = 0 then α is not executed at all.

3. After the loop exits, i should be equal to n.

Task 7 (5 pts) Using for (and not while), write a program to compute the sum 1 + 3 + 5 + · · · +
(2k + 1) under the precondition k ≥ 0.

Task 8 (5 pts) Define ωJfor 0 ≤ i < n do αKν inductively, analogously to the way we defined the
meaning of ωJwhile P αKν.

Task 9 (5 pts) Define Jfor 0 ≤ i < n do αK inductively, analogously to the way we defined the
meaning of Jwhile P αK .

Task 10 (20 pts) Give a right rule [for]R for [for 0 ≤ i < n do α]Q(i) in analogy to our proof rule
[while]R.

You should allow for an arbitrary loop invariant J(i) in the premises, analogously to [while]R.
Your rule should incorporate assumptions about i that hold for all safe for loops so they don’t
need to be expressed explicitly in J every time the proof rule is used.

Furthermore, the only explicit program properties in your premises should be for α, although
formulas do not need to get smaller.

Task 11 (15 pts) Prove the correctness of the following for loop using your rule from the previous
task. Explicitly state the loop invariant J you used.

n ≥ 0, a = 0, b = 0 ⊢ [square] a = n ∗ n

where “square” is the program

for 0 ≤ i < n do { a := a+ b+ 1 ; b := b+ 2 }

For space reasons, state the proof of each premise of your [for]R rule separately, but make it clear
which proof is of which premise. You do not need to justify any sequent of pure arithmetic (that
is, not containing any programs), but of course such sequents must be valid and you should check
that to your own satisfaction.

ASSIGNMENTS DUE TUE, SEP 17, 2024



Homework 2 A2.3

Task 12 (10 pts) If possible, provide a translation of for 0 ≤ i ≤ n do α into our language without
for (but with while) with the same meaning (which you do not need to prove). If you believe it is
not possible, explain briefly why you think so.

Task 13 (5 pts) If possible, provide a translation of while P α into our language without while
(but with for) with the same meaning (which you do not need to prove). If you believe it is not
possible, explain briefly why you think so.

ASSIGNMENTS DUE TUE, SEP 17, 2024


	Skip (15 points)
	For Loops (65 points)

