
Assignment 4
Information Flow

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Due Wednesday, October 30, 2024
90 points + 20 points extra credit

Your solution should be handed in as a file hw4.pdf to Gradescope. If at all possible, write
your solutions in LATEX. The handout hw4-safety.zip includes the LATEX sources for Lectures
11 and 12 and the necessary style files which provide some examples for rules, derivations, and
proofs. Because we are one day late to post the assignment, it is due to Wednesday, instead of
Tuesday. You may use up to two late days as usual.

1 Implicit Flows [60 points + 20 points extra credit]

Consider adding a new construct to our language SAFETINY, try α catch β. Note that in
SAFETINY all commands are safe, but we have test P which aborts if P is false. We do not
consider division, memory read/write, or assert. In order to simplify matters further, we also
exclude loops from consideration, but see the extra credit tasks at the end of this problem.

try α catch β is supposed to execute as follows:

1. Execute α in the current state ω

2. If α does not abort, the try/catch construct finishes in the poststate of α

3. If α aborts, we continue by executing β in the prestate ω. In this case, the poststate of β will
be the poststate of try α catch β.

try/catch is not easy to implement efficiently in a compiler since we have to either save the
prestate ω, or track assignments so we can roll back the state when a test fails. As we see in Task 2,
it is not so difficult in an interpreter.

Here are some examples:

eval ω (try test ⊥ catch x := 0) = ω[x 7→ 0]
eval ω (try test ⊤ catch x := 0) = ω
eval ω (try test ⊥ catch test ⊥) aborts
eval ω (try (x := 0 ; try (test x > 0) catch x := 1) catch x := 2) = ω[x 7→ 1]

Task 1 (10 points) Give a semantic definition of ωJtry α catch βKν and test P that models the
intended behavior based on the informal description above. You should model a program that
aborts (and is not caught) as one that has no poststate.

ASSIGNMENTS DUE TUE OCT 29, 2024



Homework 4 A4.2

With this understanding, we can update our definition of eval so that it explicitly returns either
a state ν or abort. We show the cases for sequential composition, skip, and assignment.

eval ω (α ; β) = abort if eval ω α = abort
eval ω (α ; β) = abort if eval ω α = µ and eval µ β = abort
eval ω (α ; β) = ν if eval ω α = µ and eval µ β = ν

eval ω (skip) = ω
eval ω (x := e) = ω[x 7→ c] where evalZ ω e = c

Task 2 (15 points) Complete the definition of eval with the cases for conditionals, tests, and try/catch.

Task 3 (10 points) Conjecture an axiom of equivalence for [try α catch β]Q, or explain briefly
why you believe no such axiom is possible in dynamic logic (as we have constructed it so far).
Note that your axiom only needs to be sound in the language without loops.

Task 4 (5 points) Give an example of a security policy Σ0 and program α0 demonstrating that
test and try/catch create a new possibility for implicit information flow. For this question, you
should work with a security lattice with just two elements H and L with L ⊏ H and the definition
of termination-insensitive noninterference from Lecture 11.

Task 5 (10 points) Prove that your example from the previous task violates termination-insensitive
noninterference, that is, Σ0 |= α0 secure is not true.

In order to prevent the implicit flows enabled by try/catch we introduce a new ghost variable
handler into the information flow type system. The security level of handler should be that of the
catch that would be invoked should the current program abort. It should be ⊥ (the least element
of the security lattice) at the beginning of evaluation.

Task 6 (10 points) Give rules for try/catch and test in the information flow type system. You do
not need to prove their soundness.

The remainder of Problem 1 is for extra credit.

In order to support loops, we assume a global bound b on the number of iterations for each while
loop, after which it aborts. For example, with b = 0 the program aborts if it ever attempts to
enter the body of a loop, with b = 1 each loop while P α is equivalent to if P then (α ;
test (¬P )) else skip.

Task 7 (5 bonus points) Give a semantic definition of ωJwhile P αKν that models the intended
behavior of bounded loops based on the informal description above.

Task 8 (5 bonus points) Complete the definition eval by providing a clause for while loops bounded
by b. Feel free to use auxiliary functions.

In order the conjecture suitable axioms in dynamic logic assume that each loop while P α with
loop invariant J is written explicitly as whilebJ P α.

Task 9 (10 bonus points) Conjecture axioms in dynamic logic for whilebJ and try/catch, or ex-
plain why you think that bounded loops and try/catch cannot be axiomatized in the framework
of dynamic logic (as we have constructed it so far).

ASSIGNMENTS DUE TUE OCT 29, 2024

https://15316-cmu.github.io/2024//lectures/11-infoflow.pdf


Homework 4 A4.3

2 Declassification [30 points]

Consider the formulation of termination-insensitive noninterference in the presence of declassifi-
cation under the two-level security lattice (L ⊏ H).

Assume α contains a single occurrence of declassifyL(e) where x ∈ use e implies
x ̸∈ maydef α.

For such programs we define Σ |= α secure iff
whenever Σ ⊢ ω1 ≈L ω2

and eval ω1 e = eval ω2 e
then Σ ⊢ eval ω1 α ≈L eval ω2 α

Task 10 (20 points) Assume you are given a security policy Σ and a program α that contains a
single occurrence of declassifyL(e) satisfying the use/maydef condition. Show how to construct
a formula R in dynamic logic such that the validity of R implies Σ |= α secure. Your starting point
should be the construction in Section 2 of Lecture 12.

Task 11 (5 points) Give an example policy Σ0 and program α0 that is not secure due to incorrect
use of declassification, that is, the use/maydef condition is violated. Show the encoding of the
example in dynamic logic and determine whether it is valid. Explain your finding.

Task 12 (5 points) Give an example policy Σ1 and a program α1 that uses declassification and is
secure. Show the encoding of the example in dynamic logic and demonstrate that it is valid. This
is usually done most directly by constructing a weakest precondition, if the formula is in the class
that permits it. You don’t need to show intermediate steps.

ASSIGNMENTS DUE TUE OCT 29, 2024

https://15316-cmu.github.io/2024//lectures/12-declassification.pdf

	Implicit Flows [60 points + 20 points extra credit]
	Declassification [30 points]

