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1 Introduction

So far, we have looked at information flow in a simplified imperative setting. We
looked at how to handle constructs like assignments, loops, and memory access for
termination-insensitive information flow, then sprinkled on additional restrictions
to account for termination and timing sensitivity. However, the language we’ve
been using so far lacks even functions! Undoubtedly, you wouldn’t like to work
in such a language. In this lecture, we will show that the foundations of informa-
tion flow we’ve developed generalize well beyond our simple imperative setting to
handle the vastly different case of higher-order functional languages like Standard
ML, OCaml, Haskell, or Lean. Of course, modern languages like Swift, Scala, and
Rust combine both imperative and functional elements. The techniques introduced
in this lecture can be used to develop a relatively complete account of information
flow for them.

2 Functional Programs are Expressions

Recall from Lecture 11 that we defined the security level of expressions and for-
mulas (reproduced in Figure 1) by finding the highest variable among them. For
instance, +F defines the security level of e1 + e2 as simply the highest variable
contained between both (represented by taking their least upper bound ⊔). This
machinery is quite different from that for programs, which did not have a secu-
rity level at all: we had to check them against a policy consisting of assignments
from variables to security levels. The essential difference between expressions and
programs in TinyScript is that expressions evaluate to a value, but programs are
evaluated for their side effects. Because expressions evaluate to a value, they (se-
mantically, the value they return) can be assigned a security level.
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Σ ⊢ e : ℓ

Σ(x) = ℓ

Σ ⊢ x : ℓ
varE

Σ ⊢ c : ⊥
constE

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 + e2 : ℓ1 ⊔ ℓ2
+E

Σ ⊢ P : ℓ

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 ≤ e2 : ℓ1 ⊔ ℓ2
≤F

Σ ⊢ ⊤ : ⊥
⊤F

Σ ⊢ P : ℓ1 Σ ⊢ Q : ℓ2

Σ ⊢ P ∧Q : ℓ1 ⊔ ℓ2
∧F

Figure 1: Information Flow for Expressions and Formulas

For instance, the expression 1 + 1 evaluates to 2, but the program x := 1 + 1
merely produces a poststate [x 7→ 2] when evaluated. All functional programs
are of the former variety: they do not modify variables and therefore produce a
poststate, but exclusively compute and return values. For the same reason that
the information flow rules for TinyScript expressions are much simpler than those
for programs, we can significantly simplify information flow in the functional set-
ting! Gone is the complexity of checking assignments and of carefully setting up
constructs to account for them— in if , while, and (as you saw on Assignment 4)
try/catch. To check information flow for functional programs, we simply have
to extend our existing label propagation approach for expressions and formulas.
In other words, because information flow is a matter of reasoning about the in-
puts and outputs of a computation, we need only worry about the data passed to
expressions and the data they return— because these are the only possible inputs
and outputs in a pure functional setting. Throughout this lecture, we will take
advantage of this simplicity and demonstrate the extra power it affords us.

3 Parametric Polymorphism is Information Flow

We first take a detour into more familiar territory. Consider the function fst in
Figure 2. Type variables would typically have ticks before them, but they are itali-
cized here instead. fst takes two arguments, and returns the first. Its type signature,
a → b → a, expresses exactly this fact! That is, the type of fst captures its informa-
tion flows. The intuition is that if we view a and b as security levels, then the type
tells us the label of the return value: it is the same as the label of the first argument.

The function both is similar, taking two arguments and returning a pair con-
taining them. Again, the return type a∗b tells us exactly which elements of the pair
are dependent on which argument to both. In other words, the label of the first
element is a, and the label of the second is b.

Now turn to add, which again takes two arguments but now adds them to-
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val fst : a → b → a
let fst x y = x

val both : a → b → a ∗ b
let both x y = (x, y)

val add : int → int → int
let add x y = x+ y

type a b sum = Left of b | Right of a
val branch : bool → a → b → a b sum
let branch b x y = if b then Left(x) else Right(y)

Figure 2: A couple ML programs

gether. From an information flow perspective, we’d like to know that the return
value is dependent on both arguments. However, the ML type system will not
allow us to straightforwardly express this: as soon as we do interesting (if you con-
sider adding integers interesting) computation with our data, we lose the ability to
talk about information flow. branch also witnesses this fact: it uses a sum type to
express that the output is dependent on its latter two inputs. However, we miss the
indirect flow from the first input b— which is not polymorphic because we need to
compute with/branch on it— to the return value. Doing information flow this way
is convenient, but appears to be quite brittle... surely there is a better way? We’ll
work informally first, before introducing the typing rules and discussing sound-
ness.

3.1 A Second Attempt: Tagging Types

The key is to recognize that information flow of the variety shown above piggy-
backs on ML’s ability to express machinery that is generic over the structure of
its inputs. In other words, the same mechanism— parametric polymorphism—
is deployed for both writing reusable machinery and specifying information flow
properties. That seems to be the core of our troubles. What if we separate these
two? Instead of conflating polymorphic types, which are intended to describe the
structure of some underlying data, and information flow labels, which describe the
structure of the computation, we introduce a special new type for describing in-
formation flow constraints. For simplicity, we won’t use type variables within the
data portion of the type going forward— we’ll just specialize everything to base
types bool and int.

Figure 3 shows the new types for the terms from Figure 2. M : [ a ] int can
be read as “the expression M has type int with dependencies a.” The types for fst
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val fst : [ a ] int → [ b ] int → [ a ] int
let fst x y = x

val both : [ a ] int → [ b ] int → [ a ] int ∗ [ b ] int
let both x y = (x, y)

val add : [ a ] int → [ b ] int → [ a b ] int
let add x y = x+ y

val branch : [ c ] bool → [ a ] int → [ b ] int → [ a b c ] int
let branch b x y = if b then x else y

Figure 3: Adding information flow labels

and both are nearly identical, now specialized to work on int and with the infor-
mation flow labels appearing separately in brackets [ a ]. add shows the first signs
of departure, now able to be equipped with an information flow type signature ex-
pressing the dependency of its output on both of its inputs. Finally, the term for
branch has changed: it no longer needs to use a sum type in order to capture its
flows. Over the prior typing, the indirect flow from the conditional guard is now
expressed with the dependency of the output on c.

3.2 Syntax and Typing

Dependencies ϕ ::= ◦ | ϕ α

Types τ ::= bool | int | [τ · ϕ] | τ1 → τ2 | ∀α. τ
Expressions M,N ::= true | false | n | x | M +N | λx.M | M N | Λα.M | M [ϕ]

| if N then M1 else M2

With some intuition in hand, we can look at our information flow system more
formally. A grammar is given above; we have security labels ϕ, types τ , expres-
sions M,N , dependencies α, integers n, and variables x. The form of our typing
judgment— for now— is Γ ⊢ M : τ | ϕ. Our antecedents Γ = x1 : τ1, x2 : τ2, . . .
consist of variables mentioned in M and their types. τ is the type of M , and ϕ is its
set of dependencies. The latter corresponds to the bracketed dependency sets from
Figure 3 and plays the same role as the labels ℓ from Figure 1.

Our dependency sets correspond to mathematical sets, and operations on them
can be thought of that way: ⊏ is ⊂, ⊔ is ∪, and ◦ is ∅. This also means that the
order and number of dependencies within a dependency set does not matter. As a
matter of notation, we will elide ◦ when dependency sets are non-empty.
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ℓH

ℓL1 ℓL2

⊥

α β

α β

◦

The above diagrams illustrate the difference between labels ℓ as we have pre-
viously worked with them, on the left, and labels ϕ in our system, on the right.
We previously worked with abstract labels ℓ drawn from a lattice, with a partial
ordering ⊥ ⊏ ℓL1 , ℓL2 ⊏ ℓH between them. The situation here is similar, but now
the internal structure of the labels is exposed via the set of dependencies they repre-
sent. The partial ordering is expressed by taking subsets of those dependencies, as
shown in the diagram on the right. The empty set of dependencies ◦ corresponds
to the ⊥ label. Each dependency represents some particular input to the computa-
tion; for instance, password or gradebook might appear inside labels. Dependencies
won’t always be so concrete; functions will generally introduce generic dependen-
cies corresponding to their arguments, as seen in Figure 3.

Γ ⊢ true : bool | ◦
T-TRUE

Γ ⊢ false : bool | ◦
T-FALSE

Γ ⊢ n : int | ◦
T-INT

Γ ⊢ M : int | ϕ1 Γ ⊢ N : int | ϕ2

Γ ⊢ M +N : int | ϕ1 ⊔ ϕ2

T-ADD

Starting with integers and booleans, we have four rules. T-TRUE, T-FALSE, and
T-INT judge any boolean false/true or integer literal n ∈ N to be a bool or int with no
dependencies. T-ADD computes the label of the addition of two integers to be the
join (or set union) of their labels. We see that these are strikingly similar to the rules
constE and +E presented in Figure 1— in fact, they are essentially identical! This
is no mistake, and the intuition for the earlier rules carries over straightforwardly.
For the program x+ y, where x has dependencies α and y has dependencies β, the
addition expression will have dependencies α β.

Γ, x : τ ⊢ x : τ | ◦
T-VAR

The variable rule is also nearly identical to the prior variant varE, requiring an
x : τ in the antecedents Γ in order to conclude that x has type τ with no dependen-
cies (represented by ◦). The last part is slightly odd, though: variables appear to be
constrained to be at the ◦ (or ⊥) label! This is not the case for constE, which permits
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variables to be at whichever label is prescribed by the environment Σ (which we
previously referred to as the security policy). What gives? The secret is in the next
two rules, which permit security labels ϕ to be captured in types τ .

Γ ⊢ M : τ | ϕ

Γ ⊢ M : [τ · ϕ] | ◦
T-CONSUME

Γ ⊢ M : [τ · ϕ1] | ϕ2

Γ ⊢ M : τ | ϕ1 ⊔ ϕ2

T-PRODUCE

Reading from top-to-bottom, T-CONSUME permits an expression M with some
dependencies ϕ to pull (or ‘consume’) those dependencies into its type, turning its
type τ into [τ · ϕ]. T-PRODUCE reverses this operation, ejecting dependencies from
the type of M back into the typing judgment. Now we see why T-VAR isn’t very
restrictive at all: it’s perfectly valid to have x : [int · ϕ], which can be applied to
T-PRODUCE to get Γ ⊢ x : int | ϕ.

Let’s work through a derivation of the program x + y from before with the
rules we’ve introduced so far. We complete the branch for x; the branch for y is
analogous.

x : [int · α], y : [int · β] ⊢ x : [int · α] | ◦
T-VAR

x : [int · α], y : [int · β] ⊢ x : int | α
T-PRODUCE

. . . y : int | β . . .

x : [int · α], y : [int · β] ⊢ x+ y : int | α β
T-ADD

It appears the rules are tracking information flow faithfully, as expected: the
labels of both inputs to the addition are forced to be represented in the dependency
set of the output. In our setting, a bad flow is one where the dependencies of the
source of some flow (here, the inputs to addition) are not expressed in the type or
dependency set of the destination (the output of addition).

Γ ⊢ N : bool | ϕb Γ ⊢ M1 : τ | ϕ Γ ⊢ M2 : τ | ϕ

Γ ⊢ if N then M1 else M2 : τ | ϕb ⊔ ϕ
T-IF

T-IF is simpler than in the imperative setting. Since we’re working in a func-
tional language, if now returns the value of its succeeding branch rather than exe-
cuting it for its side effects. This is reflected in the type τ of a conditional expression
being the same as the type of its branches. T-IF requires that the security level of
the whole expression ϕb ⊔ ϕ depends on the security level of the conditional guard
ϕb, which accounts for indirect flows. Previously, we set pc to the security level
ϕb of the branch, but our language lacks assignment, memory access, or any other
kind of side effecting operation, so we’re absolved of that requirement.

A choice that may seem slightly odd here is that both of the branches are con-
strained to return the same dependency set ϕ. This seems unnecessarily prohibitive!
Let’s try relaxing this restriction.
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Γ ⊢ N : bool | ϕb Γ ⊢ M1 : τ | ϕ1 Γ ⊢ M2 : τ | ϕ2

Γ ⊢ if N then M1 else M2 : τ | ϕb ⊔ ϕ1 ⊔ ϕ2

T-IF?

The first rule turns out to be just as expressive as this one. To see why, consider
the following program in ML:

val branch′ : [ b ] bool → [ a ] int → [ a b ] int
let branch′ b x = if b then x else 0

We might intuitively expect this would fail under the first rule because we have
x : int | α in the first branch and 0 : int | ◦ in the second. It turns out this is typable
under T-IF because of another rule we haven’t yet accounted for: weakening.

Γ ⊢ M : τ | ϕ

Γ ⊢ M : τ | ϕ α
T-WEAKEN

The rule of weakening allows us to add an arbitrary dependency to any ex-
pression. This may seem strange, but from an information flow perspective, it is
intuitively sound: we may not lie downwards about our expression being of lower
security than it actually is, but we may lie upwards and say that it is of higher secu-
rity than it strictly needs to be. Think about it this way: it is fine to mark the boolean
true with dependency password , because all this means is that we must now treat
that boolean as though it contains password information— no password data can
be leaked from this maneuver. Concretely, this means we can derive · ⊢ 0 : int | [ β ]
like so:

· ⊢ 0 : int | ◦
T-INT

· ⊢ 0 : int | β
T-WEAKEN

In other words, whenever we have differing ϕs across branches, we can join
them together and add dependencies on either side until they are equivalent. With
this in our pocket, let’s attempt a derivation for the body of branch’ above. Premises
in a box are those yet to be solved.

b : [bool · b], x : [int · a] ⊢ b : [bool · b] | ◦
T-VAR

b : [bool · b], x : [int · a] ⊢ b : bool | b
T-PRODUCE

x 0

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME
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. . . b . . .

b : [bool · b], x : [int · a] ⊢ x : [int · a] | ◦
T-VAR

b : [bool · b], x : [int · a] ⊢ x : int | a
T-PRODUCE

0

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME

. . . b . . . . . . x . . .

b : [bool · b], x : [int · a] ⊢ 0 : int | ◦
T-INT

b : [bool · b], x : [int · a] ⊢ 0 : int | a
T-WEAKEN

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME

The invocation of T-WEAKEN in the last case shows our strategy for unifying
dependencies across branches– we add a dependency a to 0 to satisfy T-IF. Return-
ing to familiar territory, the rule for creating a lambda is nearly identical to what
we have already seen. In Lecture 17, we introduced the ‘proof term’ versions of the
→L and →R rules as:

Γ, x : P ⊢ N : Q

Γ ⊢ (λx.N) : P →Q
→R

Γ ⊢ N : P Γ,M N : Q ⊢ O : δ

Γ,M : P →Q ⊢ O : δ
→L

Γ, x : τ1 ⊢ M : τ2 | ◦

Γ ⊢ λx.M : τ1 → τ2 | ◦
T-LAM

Γ ⊢ M : τ1 → τ | ϕ Γ ⊢ N : τ1 | ◦

Γ ⊢ M N : τ | ϕ
T-AP

T-LAM corresponds the right rule, and is nearly identical. T-AP and the left
rule differ slightly: the left rule returns the result of application through its second
premise, whereas T-AP presents the application form in its conclusion. As a slight
aside, this captures the essential difference between sequent calculus and natural
deduction-style presentations of programming language theory. In general, it will
be the case that rules of creation will be identical between natural deduction and
sequent calculus presentations, but rules for usage will return their result in the
antecedent of a premise. In any case, the distinction isn’t relevant here beyond
gaining an understanding of the application rule.

The notable part of T-LAM is that it requires the body of the lambda to have
consumed its dependencies into its type. We may be tempted to write the rule
instead as follows, with the ϕ propagating through the lambda:

Γ, x : τ1 ⊢ M : τ2 | ϕ

Γ ⊢ λx.M : τ1 → τ2 | ϕ
T-LAM?
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This is possible, but semantically odd: from an information flow perspective,
the dependencies of the function body are only expressed when it is called, not
when it merely appears somewhere. Formally, this happens because a lambda is
a negative type, and is therefore defined by how it is used— not by its passive
structure. No information can be observed from a lambda without calling it, so we
only track information flow on application. We also force function arguments to
have consumed all their dependencies in the second premise of application. This
forces programs to track information flow more precisely. Consider the function
which takes an argument with a higher label than its result:

y : [int · α] ⊢ λx. 1 : [int · α] → int | ◦

When we apply this function, it’ll have the empty set of dependencies, even
though the argument did not:

y : [int · α] ⊢ (λx. 1) y : int | ◦

Beyond precision, there is a deeper semantic reason for the choice that function
arguments must have no dependencies: it makes our system easy to extend to
handle side effects and more advanced forms of information flow checking. We
won’t have time to talk about this more, though.

Finally, we have T-DEPLAM and T-DEPAP. The two rules below are similar
to the left and right rules for universal quantifiers previously introduced. Just as
T-LAM binds a variable, T-DEPLAM binds a dependency. We can then use T-DEPAP

to instantiate that dependency to some dependency set, substituting it into the type
under the quantifier ∀. This allows us to write functions which are polymorphic
over the dependencies of their inputs, just as we can write functions in ML which
are generic with respect to the structure of their arguments. Before we look at an
example, a small omission must be revealed: beyond Γ for keeping track of term
variables, we also need ∆ in our typing judgment for tracking which dependency
variables are currently in scope.

T-DEPLAM
∆, α; Γ ⊢ M : τ | ◦

∆;Γ ⊢ Λα.M : ∀α. τ | ◦

T-DEPAP
∆;Γ ⊢ M : ∀α. τ | ϕ′ ∆ ⊢ ϕ dep

∆;Γ ⊢ M [ϕ] : [ϕ/α]τ | ϕ′

And we must update T-WEAKEN to scope check the weakened variable, be-
cause we want to preserve the property that all dependency sets are well-scoped.
As a technical detail, we must also check in T-LAM that the function argument
is well-scoped, because it’s effectively pulling its argument type out of thin air.
Briefly, if we assume inductively that M at type τ2 is well-scoped, that tells us
nothing about the scopedness of τ1.
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∆;Γ ⊢ M : τ | ϕ ∆ ⊢ α dep

∆;Γ ⊢ M : τ | ϕ α
T-WEAKEN

∆;Γ, x : τ1 ⊢ M : τ2 | ◦ ∆ ⊢ τ1 type

∆;Γ ⊢ λx.M : τ1 → τ2 | ◦
T-LAM

Let’s try to type the identity function in our system. First, what does this look
like in ML? The following seems reasonable:

val id : [ a ] int → [ a ] int
let id x = x

This corresponds to the following typing:

·; · ⊢ Λα. λx. x : [int · α] → [int · α] | ◦

Which results in the following derivation:

·, α; ·, x : [int · α] ⊢ x : [int · α] | ◦
T-VAR

. . .

·, α ⊢ [int · α] type

·, α; · ⊢ λx. x : [int · α] → [int · α] | ◦
T-LAM

·; · ⊢ Λα. λx. x : ∀α. [int · α] → [int · α] | ◦
T-DEPLAM

That was pretty painless! We omit the derivation of the scoping premise for
T-LAM because it’s straightforward: it simply checks that all dependency variables
mentioned in τ1 = [int · α] are mentioned in ∆ = ·, α. We can then instantiate α
to some b, c, assuming those dependencies are in scope, by substituting away the
former for the latter:

. . .

·, b, c; · ⊢ Λα. λx. x : ∀α. [int · α] → [int · α] | ◦
...

·, b, c ⊢ b c dep

·, b, c; · ⊢ Λα. λx. x [b c] : [int · b c] → [int · b c] | ◦
T-DEPAP

We can easily handle higher-order functions, too! Consider the below ML pro-
gram which executes some arbitrary function twice:

val twice : [ a ] int → ([ a ] int → [ a ] int) → [ a ] int
let twice x f = f (f x)

We can witness its information flow security through the following derivation–
no tricks here, just rote application of our existing rules. Let’s start by doing the
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derivation up to the first application form. We’ll elide the scope checking premises
for space reasons and because well-scopedness is straightforward here.

f f x

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

·, α; ·, x : [int · α] ⊢ λf. f f x : ([int · α] → [int · α]) → [int · α] | ◦
T-LAM

·, α; · ⊢ λx. λf. f f x : [int · α] → ([int · α] → [int · α]) → [int · α] | ◦
T-LAM

·; · ⊢ Λα. λx. λf. f f x : ∀α. [int · α] → ([int · α] → [int · α]) → [int · α] | ◦
T-DEPLAM

Then we type check f via T-VAR, eliding the typing environment because it is
the same as the conclusion:

·, α; . . . ⊢ f : [int · α] → [int · α] | ◦
T-VAR

f x

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

And finally we type check its argument, which contains another call to f , in
much the same way:

. . . f . . .

. . . ⊢ f : [int · α] → [int · α] | ◦
T-VAR

. . . ⊢ x : [int · α] | ◦
T-VAR

·, α; . . . ⊢ f x : [int · α] | ◦
T-AP

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

In summary, to deal with the higher-order function f , we simply introduce it
as a standard variable into our typing environment and type check usages of it
as usual. When we apply it, we use its type signature to determine the resulting
information flows.

We don’t have lists in our formal language, but we might wonder what a stan-
dard higher-order function like map looks like. Let’s look at an example in ML:

val map : ([ a ] int → [ b ] int) → [ a ] int list → [ b ] int list
let map f lst = match lst with

| [ ] → [ ]
| hd :: tl → f hd :: map tl

This bears striking similarity to the standard type for map, and it is tempting to
stop here. However, it is not fully general: the length of the list betrays information
dependencies! In reality, the type [ a ] int list is hiding a second dependency envi-
ronment, constrained to be empty– its true form is [ ] ([ a ] int) list. If we want to
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allow our map function to work over lists which may have lists whose structure—
not just contents— induce flows, then we need to introduce another flow variable:

val map : ([ a ] int → [ b ] int) → [ l ] ([ a ] int) list → [ l ] ([ b ] int) list
let map f lst = match lst with

| [ ] → [ ]
| hd :: tl → f hd :: map tl

It is worth noting that f itself may have information flow dependencies, so we
really could further add a dependency variable to the function type itself. How-
ever, due to the structure of the T-LAM rule this is rare enough that we consider
the above signature to be general enough. Additionally, there exists a way to take
any data at function type with dependencies of its own, and integrate it into the
dependencies its return value.

3.3 Noninterference

Why is this information flow at all— or rather, what does it have to do with infor-
mation flow as we’ve talked about it previously? All information flow systems are
joined at the hip by noninterference. Recall the prior definition of noninterference,
from the Lecture 11 notes.

We define Σ |= α secure iff for all ω1, ω2, ν1, ν2, and ℓ
Σ ⊢ ω1 ≈ℓ ω2, eval ω1 α = ν1, and eval ω2 α = ν2 implies Σ ⊢ ν1 ≈ℓ ν2.

We won’t give a semantic definition of noninterference in our setting, because
the soundness argument for this system is quite complicated due to the presence
of quantification. However, boiling this definition down to its essence, it states
that, holding all low data constant, evaluating the same program under two states
which differ along high data should yield equivalent results. We can intuit a similar
property in our setting. First, define the constant function:

const ≜ λx. 1

A valid typing for this is [int · α] → int, assuming that the argument is an in-
teger dependent on some α (you might imagine this to be denoting a dependency
on something sensitive, like a password). More generally, for our purposes the in-
put type need only have more, or different, dependencies than the output.1 The
following should be true:

const x ≡ const y for all x, y

1For technical reasons, each dependency in the type should be assumed to be quantified over
exactly the shown type. The simplified view suffices for our informal approach here, though.
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Where it may be the case that x ̸≡ y. In fact, it turns out that we can replace const
here with any expression of type [int ·α] → int, and the above property should hold.
That is, assume f is some such term. Then noninterference in our case guarantees
that:

f x ≡ f y for all x, y

Any function from high data to low data must only reveal the low data. Let’s
look at one more example, inspired from one we’ve seen in Lecture 12. (We haven’t
yet introduced an equality construct, but information flow-wise, it is analogous to
T-ADD.)

check ≜ λpassword . λattempt . password = attempt

If we imagine that password has dependency p, then can the output of this func-
tion be something that isn’t dependent on p? Let’s rashly assume that the type of
this function is:

[int · p] → int → bool

Of course, this seems wrong: there’s an indirect flow from password to the return
value! Can we use our intuition about non-interference to show that this typing
is invalid? Remember that, parenthesizing, the above type is equivalent to the
following, which fits our type schema from the constant function above.

[int · p] → (int → bool)

Non-interference says any program of this type should satisfy the equation:

check x ≡ check y for all x, y

Okay, so let’s see if check 2 3 ≡ check 3 3 (with the same argument given for at-
tempt on both sides, because it’s ‘low’). check 2 3 returns false, but check 3 3 returns
true. So we’ve reduced the problem to showing false ≡ true, which is impossible!
Noninterference tells us [int · p] → int → int cannot possibly be a valid typing for
check. Recall, however, that we originally introduced this example in the context
of declassification— a password checker which is barred by the type system from
returning a low-security boolean doesn’t seem useful...

3.4 Bonus: Existential Quantification, or Declassification

...which is precisely why we introduced declassification! Remarkably, it turns out
that the constructs we have introduced so far are all we need to implement a form
of declassification in the functional setting, with the key being higher-rank quantifi-
cation. Let’s work backwards, starting from our types:

impl : (∀p. [int · p] → ([int · p] → int → bool) → int) → int

LECTURE NOTES NOVEMBER 21ST, 2024



Functional and Higher-Order Information Flow L20.14

This is the type of a declassifier which offers certain methods it controls to a client.
The methods here are the first two arguments of the outermost higher-order func-
tion, which are [int · p] and [int · p] → int → bool. Note that the quantifier ∀p is over
this higher-order function’s type, not the whole function type— this is what makes
the quantification higher-rank. In order to demystify the situation, let’s investigate
this type from two perspectives, implementation and usage.

impl ≜ λclient . client [◦] 4 (λpassword . λattempt . password = attempt)

client ≜ impl (Λp. λpassword . λcheck . if check password 4 then 1 else 0)

Since client fully applies impl, it must be the case that its type is int, without
any dependencies. How can this be? client obviously returns an int dependent
on password, since it branches on the value of password. And password appears to
have a depedency on p by its type [int · p]— but the eventual return type for the
computation is int! It seems the prime offender is check, which takes in a [int · p]
and another int and returns just a bool. By our prior discussion, this would be
fine if check was constant in its first argument, but it isn’t! We can see that its
output is dependent on its ‘high-security’ argument— comparing it and returning
the result— despite returning a low-security value.

Our hat trick here leverages higher-rank quantification, particularly existential
quantification, permitting one view of password data to the implementation of the
type and another view to any clients. The key is the instantiation in impl: it sets the
dependency p, which is bound inside client, to ◦. This allows it to arbitrarily ma-
nipulate p while implementing the password field and check method which will be
provided to client. Meanwhile, client is oblivious to the fact that this trick has been
pulled: the function it provides to impl is fully polymorphic in its dependency p
(indicated by binding p with a Λ), so it must treat it as any other dependency.

The warning in footnote 1 from the prior section stems from the fact that we can
do declassification by instantiating dependency variables to ◦. Non-interference
must in reality operate on fully quantified functions, where the flows expressed in
the type are not for some instantiation of dependency variables (possibly to ◦), but
for all instantiations. Concretely, the first of the following evidently isn’t true of the
preceding check function (of type [int ·p] → int → bool), but the second must be true
of some check ′ of type ∀p. [int · p] → int → bool.

check x 1 ≡? check y 1 for all x, y

check ′ [ϕ] x 1 ≡ check ′ [ϕ] y 1 for all ϕ, x, y

For more information about deploying existential quantification to elegantly
address declassification, see Cruz and Tanter [2019]. The main benefit of such a
system is that declassification is constrained: each impl may only declassify the ex-
istential variables introduced into clients by it. All others must behave as ordinary
dependencies. This provides excellent local reasoning properties: we can be sure
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that functionality intended to declassify password data, for instance, does not ac-
cidentally affect gradebook data.

4 Remarks

The system we have introduced here bears striking similarities to System F as intro-
duced in Girard [1972] and Reynolds [1984]. System F provides the basis for para-
metric polymorphism as featured in many real-world programming languages,
and enjoys a relational property called parametricity which turns out to be quite
similar in flavor to noninterference. Another approach to information flow within
functional languages can be found in Simonet [2003], which addresses information
flow for (a subset of) OCaml in a more directly lattice-based manner.

The contents of this lecture is the subject of (my) ongoing research! In this note
we’ve introduced the fully structural fragment. It turns out that we can remove
T-WEAKEN from the system and retain a sensible notion of non-interference. We
can also remove two further rules corresponding to contracting ([ α α ] = [ α ])
and commuting ([ α β ] = [ β α ]) dependencies, which we assumed implicitly
in this lecture, and these too have reasonable non-interference properties (in fact,
the former case can be seen to correspond to timing-sensitive information flow).
The soundness of the system relies on a powerful generalization of the typical non-
interference theorem, called substructural non-interference.
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