
Lecture Notes on

Propositional Logic and Proof

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 2
August 29, 2024

1 Introduction

In this course, we repeatedly define security policies and investigate how they can
be provably enforced on programs. Such enforcement could be static in the sense
that we verify that a given program will satisfy our security policy before we ever
run it. Or it could be dynamic in the sense that we abort the program if it ever
tries to perform an action that would violate our security policy. Or we could use
a combination of such techniques. This requires us to formalize (a) the security
policy, (b) our programming language and how it executes, and (c) the enforcement
mechanism. We further have to prove that the enforcement mechanism works as
intended.

Our not-so-secret weapon will be formal systems of deduction. They are used
in multiple roles: they can serve as definitions, they can serve as the basis for im-
plementations, and they can serve as the focal point of proof.

In this first lecture we exemplify some these roles in one of the simplest possi-
ble settings: the Boolean logic of propositions. Propositional connectives such as
conjunction, disjunction, implication, negation, etc. are at the very heart of logical
reasoning, so the insights and techniques from this lecture will be a useful guide to
future lectures. There are no programs yet—we’ll add them in the next lecture.

2 Propositional Formulas

Propositional formulas F,G,H, . . . are constructed from propositional variables
p, q, . . . by forming conjunctions, disjunctions, implications, negations, and possi-
bly others like bi-implication. There are also constants ⊤ (for true) and ⊥ (for false).
This is expressed in the following so-called Backus-Naur Form (BNF).

Formulas F,G,H ::= p | F ∧G | F ∨G | F →G | ¬F | ⊤ | ⊥

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.2

Variables can take the value ⊤ (true) or ⊥ (false), and the meaning of the other
connectives are given by their truth tables. For example, F ∧ G is true if both F

and G are true, and false otherwise. F → G is true either F is false or G is true.
We also refer to propositional variables as atomic proposition because they cannot
be further decomposed. In the next lecture we will add other atomic propositions
besides variables.

We say a formula F is valid if it is true no matter which truth values we assign
to the variables contained in them. A formula F is satisfiable if there is some way to
assign truth values to the variables so that the resulting formula is true.

3 Simple Sequents

We now want to devise a system of inference rules so we can formally prove that
a given proposition is valid. It should be designed so that if someone doubts the
validity of a proposition you can convince them by showing them the proof. Each
step in the proof should be correct, and each step should be easy to check.

The design of systems of inference will occupy a lot of our time, and it is far
from straightforward. There are many choices, and the same concepts may ad-
mit many different formalization, suitable for different purposes. For example, we
could have very few inference rules (in propositional logic often just one!) and
many axioms, usually called a Hilbert-style system. Or we could have many rules
and essentially no axioms. For this lecture we choose Gentzen’s sequent calcu-
lus [Gentzen, 1935]. It has several useful properties which we will come back to
starting in Section 8. One of them is that many logics permit formulations as se-
quent calculi because they are constructed very systematically.

A simple sequent has the form F1, . . . , Fn ⊢ G where F1, . . . , Fn are the antecedents
and G is the succedent. The symbol “⊢” separating them is called a turnstile and
usually pronounced “entails”. A sequent formalizes the state of a proof where we
have the assumptions F1, . . . , Fn and try to prove the goal G. In fact, most proof
assistants like Coq or Lean will present the state of a missing proof in the form of a
sequent because it reflects the way that mathematicians think about the state of an
(incomplete) proof.

We often abbreviate the collection of antecedents as Γ (capital Gamma). Also,
their order is irrelevant, so we consider, for example, p, q to be the same as q, p.

More formally, we say a sequent Γ ⊢ G is valid if G is true whenever all propo-
sitions in Γ are true. We often write this out as “all Γ true implies G true”.

4 Right and Left Rules

A pleasant property of the sequent calculus is that the connectives are defined in
isolation from each other. This makes it easy to consider subsets of the connectives

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.3

or extensions with additional connectives because in many cases we don’t have to
change any of the existing rules.

The rules comes in two flavors. The right rules define how to decompose the
consequent, that is, the goal proposition on the right-hand side of the turnstile.
Conversely, the left rules define how to decompose an antecedent, that is, an as-
sumption on the left-hand side of the turnstile.

Let’s start with conjunction. How do we prove F ∧ G from some assumptions
Γ? Easy: we prove both F and G separately from the assumptions. Formulated as
a rule:

Γ ⊢ F Γ ⊢ G

Γ ⊢ F ∧G
∧R

We write (and read) this rule bottom-up. Reading upwards, we see that we elimi-
nate the conjunction from the given formulas.

The sequent below the line is called the conclusion, while the two sequents above
the line are the premises. The name of the rule, ∧R (read: “and-right”), is written to
the right of the line.

We also have to consider how we use an assumption F ∧G. The insight is that if
we know F ∧ G is true, then F and G must both be true. As a rule (again, read it
from the bottom up):

Γ, F,G ⊢ H

Γ, F ∧G ⊢ H
∧L

For this rule we implicitly apply our convention that the order of the antecedents
does not matter. So F ∧G doesn’t actually have to be the last antecedent, it just has
to be one of them.

We are almost ready to do our first formal proof, that is, derivation. But we
have to be able to complete a partial proof and declare victory. Recall that Γ ⊢ F

is valid (by definition) if whenever all formulas in Γ are true then F is true. This
justifies the following rule of identity:

Γ, F ⊢ F
id

It may look strange at first because it is a rule with no premises. As we construct
our sequent calculus proofs bottom-up, applications of the identity rule sit at the
top (which are the leaves, if we think of the proof as a tree).

Let’s try to prove the sequent p∧q ⊢ q∧p. It should be intuitively clear that this
is valid, so we should be able to prove it. We construct the derivation bottom-up,
starting with

...
p ∧ q ⊢ q ∧ p

There are two options: we could apply either the right rule of the left rule for
conjunction. Let’s use the left rule. Our as yet incomplete derivation now looks

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.4

like this:
...

p, q ⊢ q ∧ p

p ∧ q ⊢ q ∧ p
∧L

At this point we can only apply the right rule for conjunction.

...
p, q ⊢ q

...
p, q ⊢ p

p, q ⊢ q ∧ p
∧R

p ∧ q ⊢ q ∧ p
∧L

We recognize both unproved goals as instances of the identity rule and finish our
derivation.

p, q ⊢ q
id

p, q ⊢ p
id

p, q ⊢ q ∧ p
∧R

p ∧ q ⊢ q ∧ p
∧L

5 Implication

We move on to implication F →G. How do we prove an implication? We assume
F and then prove G under this additional assumption.

Γ, F ⊢ G

Γ ⊢ F →G
→R

Remember to read the rule bottom-up.
In order to understand the left rule, we have to think about how we use an

assumption F →G. Here is a first attempt: if we also know F we are permitted to
use G.

Γ, F,G ⊢ H

Γ, F, F →G ⊢ H
→L?

While this rule is sound (see Section 9) it is insufficient. Here is an example:

...

(p→ p)→ q ⊢ q

Is this sequent valid? This is easy to check by a truth table argument. Assume that
(p→ p)→ q. We have to show that q is true. Since p→ p is always true, so we know
that q must also be true.

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.5

But in the system so far, no rule can be applied! Since the succedent is a vari-
able and the only antecedent is an implication, the only rule that could apply is a
left rule for implication. But it doesn’t, since we do not have p → p as one of our
antecedents.

The fix here is not at all obvious. We reinterpret uses of an implication as fol-
lows: if we know F →G and we can prove F then we know G. By “know” here we
mean that it is one of our assumptions. Writing this out in the form of a sequent
rule:

Γ ⊢ F Γ, G ⊢ H

Γ, F →G ⊢ H
→L

As noted by a student in lecture, there seems to be a “temporal” dependency: we
only have license to assume G if we have first proved F . But during bottom-up
proof construction we could also proceed with the second premise first. That is,
we could “check” (by proving) that G entails H and only if that’s the case, do we
bother to (try to) prove F .

Now we can prove the problematic example from above. As usual, we proceed
bottom up, but we only show the final derivation.

p ⊢ p
id

· ⊢ p→ p
→R

q ⊢ q
id

(p→ p)→ q ⊢ q
→L

An excellent question from lecture: “What is the difference between F → G and
F ⊢ G?” Indeed, F → G is valid as a formula (that is, always true) if and only if
F ⊢ G is valid as a sequent. Let’s think about how you might go about building a
prover for the validity of formulas. You are given a formula F →G and you want to
construct a derivation of the sequent · ⊢ F →G. Here we use “·” to emphasize that
there is an empty collection of antecedents. We break this down and now to have
to build a derivation of F ⊢ G, where you have a singleton list F as an antecedent
and G as a conclusion. So F ⊢ G is the result of decomposing the implication,
now exposing the top-level logical connectives of F and G for further (bottom-up)
application of inference rules. In contrast, F → G is just a single thing: a formula
that’s an implication.

6 Disjunction

Disjunction throws another wrench into the works that’s not as easy to repair as for
implication. From the truth table definition we know that F ∨G is true if either F
is true or G is true. This time, we start with the left rule because it is easier. When
have an assumption F ∨G we can proceed in a proof by distinguishing two cases,

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.6

proving our goal H in both of them. That is:

Γ, F ⊢ H Γ, G ⊢ H

Γ, F ∨G ⊢ H
∨L

From the same truth table definition, we can also conjecture that there should be
two right rules.

Γ ⊢ F

Γ ⊢ F ∨G
∨R1?

Γ ⊢ G

Γ ⊢ F ∨G
∨R2?

It is clear that during proof construction we now have to make a choice, which also
means we may have to backtrack over this choice (consider q ⊢ p ∨ q).

What’s worse, there are now some valid sequents that we cannot prove! If you
weren’t in lecture, or you don’t remember, it is quite a brainteaser to find something
valid you cannot prove. Think about it before moving on to the next page.

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.7

Consider p ∨ (p → q). This is valid: if p is true then the left disjunct is true. If
p is false, then the right disjunct p → q is true. Either way, the disjunction is true.
But with the two right rules for disjunction, we cannot prove it. There are only two
possible attempts.

XXX
· ⊢ p

· ⊢ p ∨ (p→ q)
∨R1

XXX
p ⊢ q

· ⊢ p→ q
→R

· ⊢ p ∨ (p→ q)
∨R2

The first is not valid because the variable p could be false. The second is not valid
because p could be true and q could be false.

Interestingly, even though it is incomplete for the Boolean interpretation of the
formulas using two truth values, the sequent rules we have shown so far can be
developed further into intuitionistic logic. In intuitionistic logic, proofs correspond
to (functional) programs, and propositions correspond to their types. For example,
an intuitionistic proof of F →G is a function of type F →G that takes a proof of F
into a proof of G. You can learn more about this in 15-317 Constructive Logic where
we develop a logic and a functional programming language together in a single
system.

In this course, starting in the next lecture, we instead define a small imperative
programming language Tinyscript and then reason about it externally using a logic
where every formula is either true or false.

7 Sequents with Multiple Succedents

Gentzen’s solution to the problem with disjunction is quite clever and not obvious
because it doesn’t reflect the way we do mathematics. The idea is to allow sequents
to have multiple succedents. We define

(F1, . . . , Fn ⊢ G1, . . . , Gm) is valid

if whenever all Fi are true then at least one Gj is true. Put it another way, the
sequent F1, . . . Fn ⊢ G1, . . . , Gm is valid if and only if the formula (F1 ∧ · · · ∧Fn)→
(G1 ∨ · · · ∨Gm) is valid. We generally abbreviate antecedents by Γ and succedents
by ∆ (capital Delta).

Having multiple succedents that are interpreted disjunctively allows us to hedge
our bets with a better right rule.

Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆
∨R

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.8

Γ, F ⊢ F,∆
id

Γ ⊢ F,∆ Γ ⊢ G,∆

Γ ⊢ F ∧G,∆
∧R

Γ, F,G ⊢ ∆

Γ, F ∧G ⊢ ∆
∧L

Γ, F ⊢ G,∆

Γ ⊢ F →G,∆
→R

Γ ⊢ F,∆ Γ, G ⊢ ∆

Γ, F →G ⊢ ∆
→L

Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆
∨R

Γ, F ⊢ ∆ Γ, G ⊢ ∆

Γ, F ∨G ⊢ ∆
∨L

Γ, F ⊢ ∆

Γ ⊢ ¬F,∆
¬R

Γ ⊢ F,∆

Γ,¬F ⊢ ∆
¬L

Figure 1: Sequent Calculus with Multiple Succedents

The price we pay is that we now have to generalize all of our other rules to allow
multiple conclusions. We summarize them in Figure 1. We have added the rules
for negation, to come in Section 13.

Let’s revisit our earlier problem to make sure we can now derive p ∨ (p→ q).

...
· ⊢ p, p→ q

· ⊢ p ∨ (p→ q)
∨R

At this point we can only apply one rule, the right rule for implication.

...
p ⊢ p, q

· ⊢ p, p→ q
→R

· ⊢ p ∨ (p→ q)
∨R

The unproved leaf is just an instance of the identity rule and we are done.

p ⊢ p, q
id

· ⊢ p, p→ q
→R

· ⊢ p ∨ (p→ q)
∨R

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.9

8 Properties of Inference Systems

Question: are we done? We discovered some flaws in earlier rules, so how can we
know that they are all fixed? Well, we can appeal to authority (that is, Gentzen)
and consider our job done. But that is unsatisfactory because we often have to
think about variations (like: introducing programs and reasoning about them) and
then the right inference system may not be immediately available. Also, by actu-
ally mathematically proving that our systems “works” we gain some insights that
can be exploited not only for other, closely related systems but also for an imple-
mentation.

Two fundamental properties of inference system such as the one in Figure 1 are
soundness and completeness. For sequents, they are:

Soundness: If we can derive Γ ⊢ ∆ then Γ ⊢ ∆ is valid.

Completeness: If Γ ⊢ ∆ is valid then we can derive Γ ⊢ ∆.

The flaws we found so far (for example, in →L? and ∨R1?,∨R2? were failures
of completeness: there were valid sequents we could not prove. Fortunately, our
generalization to multiple conclusions have led us to a system that is both sound
and complete.

There are other properties of interest. For example, we can ask if a logic is
decidable. On the sequent calculus this would mean that we can effectively either
prove or refute the validity of any given sequent. Again, our sequent calculus will
support this property. More properties to come.

9 Proving Soundness

We start with soundness. The way we prove it is to show that whenever all premises
of a rule are valid, so is the conclusion. Since at the leaves we have no premises, the
conclusion must then be valid outright. And therefore any sequent we derive in a
(complete) derivation must be valid. A nice consequence of this approach is that
we can consider the soundness rule by rule. If we restrict our language, soundness
still holds, and if we extend it we only have to check the new rules.

Since we have to talk a lot about validity, we sometimes abbreviate

If all F ∈ Γ are true then some G ∈ ∆ is true

as
All Γ true implies some ∆ true

Identity. Since there are no premises, we need to show that Γ, F ⊢ F,∆ is valid.
This means:

All (Γ, F) true implies some (F,∆) true

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.10

So we assume that all (Γ, F) are true, which implies that F is true. But that means
at least one of (F,∆) is true (namely F).

Implication Right (→R).

Γ, F ⊢ G,∆

Γ ⊢ F →G,∆
→R

We set up the proof as follows.

all (Γ, F) true implies some (G,∆) true (validity of premise)
all Γ true (assumption)
. . .
some (F →G,∆) true (to show)

We proceed with the proof (filling in the gap marked by “. . .”) by distinguishing
cases for F : either F is true or F is false.

all (Γ, F) true implies some (G,∆) true (validity of premise)
all Γ true (assumption)

case: F is true
. . .
some (F →G,∆) true (to show)

case: F is false
. . .
some (F →G,∆) true (to show)

some (F →G,∆) true (by cases on F)

Now we can fill in the gaps rather easily.

all (Γ, F) true implies some (G,∆) true (validity of premise)
all Γ true (assumption)

case: F is true
all (Γ, F) true (from assumption)
some (G,∆) true (from premise)

subcase: G is true
F →G true (by truth table for →)
some (F →G,∆) true (since F →G true)

subcase: some ∆ true
some (F →G,∆) true (since some ∆ true)

some (F →G,∆) true (by cases on G,∆)

case: F is false

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.11

F →G is true (by truth table for →)
some (F →G,∆) true (since F →G true)

some (F →G,∆) true (by cases on F)

This is a rather pedantic way to write down the steps, so in the next proof case we’ll
proceed more compactly.

Implication Left (→L).

Γ ⊢ F,∆ Γ, G ⊢ ∆

Γ, F →G ⊢ ∆
→L

Then we set up:

all Γ true implies some (F,∆) true (first premise)
all (Γ, G) true implies some ∆ true (second premise)
all (Γ, F →G) true (assumption)
. . .
some ∆ true (to show)

From the assumption and first premise, we know some (F,∆) true. If ∆ true we
are done. Otherwise, F true and therefore (by assumption F →G true) we know G

is true. By the second premise we then know ∆ true.
All other rules can be proved sound in a similarly systematic manner.

Theorem 1 (Soundness of the Sequent Calculus)

If we can derive Γ ⊢ ∆ then Γ ⊢ ∆ is valid

Proof: All rules are sound. In particular, for the only leaves of the proof tree (ap-
plications of the identity rule), the conclusion is valid outright. All other rules
preserve validity, and so any sequent we can derive is valid. □

It is somewhat peculiar (but common), that we motivate all the rules reading
them bottom-up, but for soundness we argue with them top-down.

10 Inversion

We would like to build a theorem prover by constructing a proof in a bottom-up
manner, using our rules of inference. A basic issue is that for a sequent F1, . . . , Fn ⊢
G1, . . . , Gm many rules may apply: left rules for formulas Fi and right rules for for-
mulas Gj . Backtracking over all such choices quickly makes proof search infeasible.

In important class of rules are those that are invertible: if the conclusion is valid
then are all the premises. We can always apply (bottom-up!) invertible rules in our
proof search without having to backtrack: we don’t lose validity.

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.12

In most inference systems we classify rules are being invertible or not. Here,
remarkably, all rules are invertible! This means when a rule can be applied, it’s
always safe to do so.

We prove a few cases of the invertible rules. It is quite similar to the soundness
proof of the rules.

Identity.

Γ, F ⊢ F,∆
id

The identity rule has no premises, so there is nothing to show.

Disjunction Right (∨R) . Disjunction gave us problems when we conjecture two
rules. Indeed, neither of them is invertible. Going to multiple conclusions solved
this problem.

Γ ⊢ F,G,∆

Γ ⊢ F ∨G,∆
∨R

We set up:

all Γ true implies some (F ∨G,∆) true (validity of conclusion)
all Γ true (assumption)
. . .
some (F,G,∆) true (to show)

From the assumption and the validity of the conclusion we know that some (F ∨
G,∆) true. If some ∆ is true, then also some (F,G,∆). If F ∨G is true then by the
truth table, either F or G must be true. In either case, some of F,G,∆ true.

Disjunction Left (∨L) .

Γ, F ⊢ ∆ Γ, G ⊢ ∆

Γ, F ∨G ⊢ ∆
∨L

We set up to show that the validity of the conclusion implies the validity of the first
premise. The proof for the second premise is symmetric.

all Γ, F ∨G true implies some ∆ true (validity of conclusion)
all Γ, F true (assumption)
. . .
some ∆ true (to show)

Since all Γ, F true, we have all Γ true and F true. Therefore (by truth table), F ∨G

true and also Γ, F ∨G. Then some ∆ true by validity of the conclusion.

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.13

Theorem 2 (Invertibility)

All rules in the sequent calculus are invertible.

Proof: Case by case, as exemplified above. □

11 Termination

The sequent calculus in Figure 1 has another remarkable property: every premise of
every rule is smaller than its conclusion. Smaller in which sense? Every rule, if read
bottom-up, removes at least one of the connectives from the sequent. Therefore, if
we just count the number of connectives, sequents become smaller during bottom-
up proof search. Eventually we must either reach a rule with no premises, or we
reach a sequent with no connectives:

p1, . . . , pn ⊢ q1, . . . , qm

Such a sequent is valid if and only if one of the pi is equal to one of the qj , that is,
precisely if the identity rule applies. Otherwise, we can set all pi to true and all qj
to false and observe that the sequent is not valid.

This means we can use proof search in the sequent calculus as a very simple
decision procedure. Invertibility tells us we can blindly apply left and right rules
without losing validity. Then we check if the identity rule applies to the leaves.

There is a small matter of strategy: in such a prover, we should probably ap-
ply 0-premise rules (proof is done!), before 1-premise rules (a proof goal replaced
by an equivalent, smaller one), before 2-premise rules (because we now have two
sequents to prove). This is only a heuristic and a matter of efficiency.

While sequent calculus search represents a decision procedure for validity in
propositional logic, it is not one that is commonly used for efficiency reasons. The
course 15-311 Logic and Mechanized Reasoning goes into great detail about different
approaches to proving propositional formulas and how to represent their proof in
practice. It also examines many applications in mathematics and a few in computer
science.

A consequence of the fact that all rules are invertible is that we could restrict
the identity rule to just propositional variables, as in

Γ, p ⊢ p,∆
id

∗

It wouldn’t change the sequents we can derive, it might just make a few proofs
slightly longer.

12 Completeness

We often have to deal with rules of inference that, taken as a whole, are not com-
plete. That’s because formal reasoning about arithmetic is inherently incomplete,

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.14

as demonstrated by Gödel [1931] and we generally include integers in program-
ming languages. However, in the case of the sequent calculus for propositional
language we do obtain completeness as a consequence of invertibility and termi-
nation.

Theorem 3 (Completeness of the Sequent Calculus)

If Γ ⊢ ∆ is valid, then Γ ⊢ ∆ is derivable.

Proof: Assume Γ ⊢ ∆ is valid. In some arbitrary order we try to construct a deriva-
tion of Γ ⊢ ∆. We can always make progress while preserving the validity of all
goal sequents until we reach a sequent consisting entirely of variables. Since it
must be valid, one of the antecedent must be the same as one of the succedents and
the identity rule applies. Therefore, all branches in the derivation can be closed off.
□

We close with word on terminology. In today’s lecture, we have used the word
“proof” in different ways. For one, we have used it to describe a formal object that
we can construct, communicate, and check (whether by hand or by machine). For
another, we have used it in the usual mathematical sense: a rigorous mathematical
argument that some claim is true, but not necessarily a formal object. Adding the
word “formal” in many places is awkward, so we will try to stick to the convention
to say deduction or derivation for a formal object, while we continue to use the word
proof in the usual mathematical sense.

13 Addendum: Negation

There is a few common logical connectives we didn’t cover. For example, nega-
tion. Fortunately, negation is straightforward and preserves the good properties
of the sequent calculus: the rules are sound and invertible, and the overall system
remains complete and decidable.

Γ, F ⊢ ∆

Γ ⊢ ¬F,∆
¬R

Γ ⊢ F,∆

Γ,¬F ⊢ ∆
¬L

Let’s prove the soundness of the right rule.

all (Γ, F) true implies some ∆ true (premise)
all Γ true (assumption)
. . .
some (¬F,∆) true (to show)

We distinguish two cases. If F is true, then we know by assumption that all (Γ, F)
true. Therefore by the premise, some ∆ true and hence some (¬F,∆) true. If F is

LECTURE NOTES AUGUST 29, 2024

Propositional Logic and Proof L2.15

false, then ¬F is true and so, again some (¬F,∆) true. In either case, some (¬F,∆)
true.

The remaining case of soundness and the two cases of invertibility follow sim-
ilarly. Also, the premises of the two rules are smaller than the conclusion, so the
decidability result and the overall completeness theorem continue to hold.

You might wonder about some other connectives, like logical equivalence also
called bi-implication, F ↔ G. Instead of giving new rules, we can also consider it
a notational definition and simply say

F ↔ G ≜ (F → G) ∧ (G → F)

We can then expand the definition and just use the rule for implication and con-
junction. In Assignment 1 you will explore something related.

References

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38(1):173–198,
1931. English translation in Solomon Feferman, editor, Kurt Gödel Collected Works,
Vol I, pages 144–195, Oxford University Press, 1986.

LECTURE NOTES AUGUST 29, 2024

Lecture Notes on

Dynamic Logic

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 3
September 3, 2024

1 Introduction

In the last lecture we introduced propositional sequent calculus because it is the foun-
dation of most of the calculi we will investigate and because it helps us understand
the basic principles underlying the sequent calculus. Let’s summarize them:

• We define sequents Γ ⊢ ∆ with antecedents (assumptions) and succedents
(goals).

• We give a meaning to sequents (also called a semantics): a sequent is valid if
when all antecedents are true then some succedent is true.

• We also give inference rules to prove sequents formally in a bottom-up manner.
These are divided into right rules (how to prove a succedent) and left rules
(how to use an antecedent), and the identity rule connecting left and right.

• We connect the inference rules to the semantics by proving (mathematically,
at the metalevel) that the sequent calculus is sound and complete:

– A rule is sound if the validity of all premises implies the validity of the
conclusion. If all rules are sound, the whole system of inference rules is
sound.

– A system of rules is complete if every valid sequent can be proved with
them.

In the specific case of propositional sequent calculus we were able to prove com-
pleteness using the following steps:

• Every rule is invertible in the sense that if the conclusion is valid then all the
premise must also be valid.

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.2

• Every rule is reductive in the sense that all premises are smaller than the con-
clusion by counting the number of connectives and logical constants.

As we move forward, we will have to give up some of these properties while re-
taining others.

2 Countermodels

We begin this lecture with a brief discussion of another part of the interface between
semantics and proof rules. Let’s say we have a sequent Γ ⊢ ∆ that is not valid.
Clearly, by soundness, we should not be able to derive it. But is there some other
information we may wish to obtain? If Γ ⊢ ∆ is not valid that there should be
some way to assign truth values to the propositional variables so that Γ is true but
∆ is false. This assignment of truth values corresponds to a counterexample to the
validity of Γ ⊢ ∆, and we say it defines a countermodel (where a model is given by
an assignment of truth values to propositional variables). Having a countermodel
is useful if we want to debug our formulas (or later our programs) because it may
express something we have overlooked.

So how do we construct a countermodel? Remember that all of the rules are
reductive and invertible, and that we have a full set of rules for the connectives
on the left or on the right of the turnstile. This means we can always reduce any
sequent we wish to prove to leaves of the form

p1, . . . , pn ⊢ q1, . . . , qm

If one of the pi equals one of the qj then we close of this branch in the proof by
using the rule of identity. If not, then we can construct a countermodel by setting
all pi to true and all qj to false. Every unprovable leaf will give us a countermodel,
although some of them may coincide.

Say we conjecture (somewhat rashly) that (p ∧ q) ∨ (¬p ∧ ¬q), which states that
p and q have the same truth value. At attempt to prove this might look as follows:

p ⊢ p
id

· ⊢ p,¬p
¬R

XXX
q ⊢ p

· ⊢ p,¬q
¬R

· ⊢ p,¬p ∧ ¬q
∧R

XXX
p ⊢ q

· ⊢ q,¬p
¬R

q ⊢ q
id

· ⊢ q,¬q
¬R

· ⊢ q,¬p ∧ ¬q
∧R

· ⊢ p ∧ q,¬p ∧ ¬q
∧R

· ⊢ (p ∧ q) ∨ (¬p ∧ ¬q)
∨R

We can close off two leaves with the identity rule, but we also see that there are
two branches where the sequent cannot be derived. The first one, q ⊢ p gives us
a countermodel where q = ⊤ and p = ⊥. The second one, p ⊢ q gives us another

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.3

countermodel where p = ⊤ and q = ⊥. These are exactly the situations where p

and q have different truth values.
Some terminology that will come in useful when using tools, reading papers,

or for other courses such as 15-311 Logic and Mechanized Reasoning.

Unsatisfiable. We call a proposition F unsatisfiable if F ⊢ · is valid. Because there
are no succedents, this can only be valid if there is no assignment of truth
values to variables in F to make it true. Equivalently, we could define that F
is unsatisfiable if · ⊢ ¬F is valid (that is, F is always false).

Satisfiable. If F ⊢ · is not unsatisfiable we call it satisfiable. A satisfying assignment
is a way to assign truth values to the propositional variables in F to make F

true. We also say that a satisfying assignment is a model.

One way to prove the validity of a formula F is to show that ¬F is unsatisfiable.
This follows easily semantically, or by proof rules because ¬F ⊢ · is valid if and
only if · ⊢ F is valid by the (sound and invertible) rule ¬L.

3 Safety and Liveness

Our goal in this course is to reason about security properties of programs so we can
prevent vulnerabilities and fend off attacks. There are different kinds of such prop-
erties, and they require different techniques to enforce them. One way to classify
them is to think about them as properties of traces of a program, that is, the (possi-
bly infinite) sequence of states or events that take place when a program executes.

Safety Properties Intuitively, a safety property means that “nothing bad happens”
during a computation. So every finite prefix of a trace should satisfy some
specification that excludes “bad” states or events. Common examples of
“bad” are programs that, in C, have undefined behavior. This includes di-
vision by zero, integer overflow, double free, or accessing memory whose
value is undefined. The latter is exploited in so-called buffer overflow attacks.
An example from concurrency are race conditions between threads. Another
example is a policy that requires that a principal is authorized before giv-
ing them access to a resource, in which case the “bad” thing is unauthorized
access.

Liveness Properties Intuitively, a liveness property captures that “something good
happens” during an execution. For example, a server should eventually re-
spond to a request, or a deleted file should actually disappear and be no
longer recoverable.

In the early part of this course we will mostly focus on safety properties. Live-
ness properties are more intrinsically more difficult to reason about and enforce

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.4

than safety properties. For more on various kinds of security properties and their
enforcements, see Schneider’s seminal paper [2000].

There are also security properties that can not be captured as properties of a sin-
gle trace. We will consider such a property, namely information flow, in the second
part of the course.

4 Dynamic Logic: A Logic with Programs

In this course we use a tiny imperative programming language so we can be rig-
orous about the concepts we introduce. With it we illustrate and analyze the con-
cepts that transfer to realistic languages. There will be small differences regarding
the precise extent of the language as we move through various concepts. Here is
our first cut. Expressions denote integers and are either constants, variables, or op-
erators like addition and multiplication. Programs include variable assignment,
sequential composition, conditionals, and loops. Formulas no longer have propo-
sitional variables (for simplicity), but we add comparisons between integers to the
usual set of logical constants and connectives. New here are two kinds of formulas,
[α]Q and ⟨α⟩Q that mention programs. We explain them below the table.

Variables x, y, z

Constants c ::= . . . ,−1, 0, 1, . . .
Expressions e ::= c | x | e1 + e2 | e1 ∗ e2 | . . .
Programs α, β ::= x := e | α ; β | if P then α else β | while P α

Formulas P,Q ::= e1 ≤ e2 | e1 = e2 | . . .
| P ∧Q | P ∨Q | P →Q | P ↔ Q | ¬P | ⊤ | ⊥
| [α]Q | ⟨α⟩Q

A state is a total map from variables to integer values. We use ω, µ, ν for states. A
program represents a partial function from an initial state (called prestate) to a final
state (called poststate). It is a partial function because loops may not terminate, so
no final state may every be reached. The sequence of states that a program goes
through is its trace as discussed above.

Characteristic of dynamic logic [Harel, 1979, Harel et al., 2000] are two modalities
that mention programs:

• [α]Q (pronounced “box alpha Q”) which is true if, starting in a prestate ω,
the formula Q will be true in every poststate ν we can reach by executing
program α.

• ⟨α⟩Q (pronounced “diamond alpha Q”) which is true in a state ω if there is a
poststate ν that we can reach by executing α in which Q is true.

We refer to Q in these formulas as a postcondition. These definitions are formulated
to account for nondeterministic programs that may have multiple poststates for a

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.5

given prestate. In our case of a deterministic language, this will be zero or one.
Therefore, we can already see that ⟨α⟩Q should imply [α]Q.

In the next lecture we introduce a rigorous semantics for dynamic logic (which,
by necessity, also includes programs and expressions). For today, we instead try to
derive some rules keeping in mind the informal semantics and our understanding
how an imperative programming language executes.

5 Conditionals and Assignments

We start with a very simple program to assign the absolute value of x to y:

if x < 0 then y := −x else y := x

As is often the case for security properties we are not interested in a full specifica-
tion of the behavior of this code. Instead, we try to analyze ranges of values. For
example, it would be safe to subsequently try to take an integer square root of y
because y will always be nonnegative. We express this property of the program
and its poststate as a formula in dynamic logic:

[if x < 0 then y := −x else y := x] y ≥ 0

The informal reason here is clear: if x < 0 then we know y = −x ≥ 0 in the
poststate. If x ≥ 0 then y = x ≥ 0.

To make this formal, we now extend our earlier sequent calculus with rules for
[α]Q. For now, we are only concerned with right rules. The goal is to reduce prop-
erties for compound programs (like conditionals) to properties of smaller programs
(like its branches). Here is an attempt:

Assume we are in a prestate ω. We want to show that Q holds in every poststate
of “if P then α else β”. We can get to a poststate in two ways: if P is true
then by executing α, and if P is false then by executing β.

Translating this reasoning into a sequent calculus rule yields:

Γ, P ⊢ [α]Q,∆ Γ,¬P ⊢ [β]Q,∆

Γ ⊢ [if P then α else β]Q,∆
[if]R

There are two premises, one for the then branch and one for the else branch. For
the then branch we are allowed to assume P , while for the else branch we are
allowed to assume ¬P .

For assignments x := e one might at first think we should be allowed to assume
that x = e in the poststate.

Γ, x = e ⊢ Q,∆

Γ ⊢ [x := e]Q,∆
[:=]R?

(unsound!)

Before reading on, you might want to think about why this is unsound.

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.6

Consider x = 2 ⊢ [x := 1]x = 3. With the rules above we could reason

x = 2, x = 1 ⊢ x = 3

x = 2 ⊢ [x := 1]x = 3
[:=]R?

The premise here is actually valid because the antecedents are contradictory. What
went wrong is that at the purely logical level we are confusing the value of x in
two different states: before and after the execution of the assignment. In lecture we
used the program x := x+ 1 which doesn’t even require a precondition to obtain a
contradiction.

In order to avoid this paradox, we track the value of x after the assignment in a
fresh variable x′. By fresh here we mean it doesn’t appear in the conclusion sequent
at all. We just need to make sure that the postcondition now talks about x′ instead
of x. We write Q(x) for the formula Q(x) which may mention x, and Q(x′) for the
result of substituting x′ for all occurrences of x in Q(x). Then the rule becomes:

Γ, x′ = e ⊢ Q(x′),∆

Γ ⊢ [x := e]Q(x),∆
[:=]Rx′

The superscript on R expresses that x′ must be “fresh” and cannot appear in the
conclusion of the rule. That is, it cannot be in Γ, e, Q(x) or ∆. In some cases, we
can then eliminate the antecedent x′ = e by substituting e for x′ in Q(x′). This can
considerably simplify proofs but isn’t always possible. We come back to this in the
next lecture.

Let’s return to our motivating example to see if we can prove it now.

x < 0, y′ = −x ⊢ y′ ≥ 0

x < 0 ⊢ [y := −x] y ≥ 0
[:=]Ry′

¬(x < 0), y′ = x ⊢ y′ ≥ 0

¬(x < 0) ⊢ [y := x] y ≥ 0
[:=]Ry′

· ⊢ [if x < 0 then y := −x else y := x] y ≥ 0
[if]R

The unproved leaves here are valid formulas of integer arithmetic. Rather than
defining somewhat tedious proof rules for them, we just imagine that they can be
proved by an oracle. In an implementation, we would use a theorem prover like
Z3 [Moura and Børner, 2008] or cvc5 [Barbosa et al., 2022] (which are actually be de-
cision procedures on nontrivial fragments of arithmetic). This is somewhat similar
to the way we handled sequents consisting only of propositional variables, except
in that case it was very easy to see if the identity rule applied or a countermodel
could be constructed.

6 Sequential Composition

How do we handle the formula [α ; β]Q? Intuitively, we run the program α, start-
ing in some prestate ω reaching some poststate µ and the run β starting in µ. Then

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.7

Q must be true in every poststate of β. The way to express this is to require that
[β]Q be true after α. In the form of a rule:

Γ ⊢ [α]([β]Q),∆

Γ ⊢ [α ; β]Q,∆
[;]R

The good news is that, once again, we have broken down the properties of the
program (α ; β) into properties of α and β.

Let’s use this rule to prove a property of the following program that combines
assignment and sequential composition

x := x+ y ; y := x− y ; x := x− y

This program swaps the values of x and y without using a new temporary variable.
(But be careful: in a language like C where integers have limited range, this will
often have undefined behavior!)

How can we express this? We couldn’t just state x = y ∧ y = x as a postcondi-
tion. Instead we “remember” the initial values of x and y. So the verification will
consist of a proof of the implication

x = a ∧ y = b
︸ ︷︷ ︸

precondition

→ [x := x+ y ; y := x− y ; x := x− y] (x = b ∧ y = a)
︸ ︷︷ ︸

postcondition

In 15-122 Principles of Imperative Computation we used //@requires for precondi-
tions and //@ensures for postconditions, limited to functions. Here, they are not
part of the program but part of a logical formula and can enclose any program.

We now build a proof of this using our rules. This construction proceeds bottom-
up, but we only show the final resulting derivation.

x = a, y = b, x′ = x+ y, y′ = x′ − y, x′′ = x′ − y′ ⊢ x′′ = b ∧ y′ = a

x = a, y = b, x′ = x+ y, y′ = x′ − y ⊢ [x′ := x′ − y′] (x′ = b ∧ y′ = a)
[:=]Rx′′

x = a, y = b, x′ = x+ y ⊢ [y := x′ − y]([x′ := x′ − y] (x′ = b ∧ y = a))
[:=]Ry′

x = a, y = b, x′ = x+ y ⊢ [y := x′ − y ; x′ := x′ − y] (x′ = b ∧ y = a)
[;]R

x = a, y = b ⊢ [x := x+ y]([y := x− y ; x := x− y] (x = b ∧ y = a))
[:=]Rx′

x = a, y = b ⊢ [x := x+ y ; y := x− y ; x := x− y] (x = b ∧ y = a)
[;]R

x = a ∧ y = b ⊢ [x := x+ y ; y := x− y ; x := x− y] (x = b ∧ y = a)
∧L

· ⊢ x = a ∧ y = b→ [x := x+ y ; y := x− y ; x := x− y] (x = b ∧ y = a)
→R

The leaf here is a sequent of pure arithmetic. Now we can carry out some substitu-
tion, like a for x and b for y and we get

x′ = a+ b, y′ = x′ − b, x′′ = x′ − y′ ⊢ x′′ = b ∧ y′ = a

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.8

and then
x′ = a+ b, y′ = a, x′′ = b ⊢ x′′ = b ∧ y′ = a

and we recognize it as valid.
We also see that explicit, step-by-step reasoning in the sequent calculus is quite

tedious and better left to a machine. Fortunately, it is not difficult to mechanize
using some tools that researchers have built over the years.

7 Rule Summary So Far

Our rules so far for [α]Q have the good properties we come to expect: they are
sound (argued only informally), they are invertible (not even considered yet), and
they are reductive (by reducing the program to its components or eliminating it
altogether).

Γ, P ⊢ [α]Q,∆ Γ,¬P ⊢ [β]Q,∆

Γ ⊢ [if P then α else β]Q,∆
[if]R

Γ, x′ = e ⊢ Q(x′),∆

Γ ⊢ [x := e]Q(x),∆
[:=]Rx′

Γ ⊢ [α]([β]Q),∆

Γ ⊢ [α ; β]Q,∆
[;]R

Figure 1: Some Rules for Dynamic Logic

In the next lecture we will look at while loops and also provide a semantics so
we prove the soundness and invertibility of some of the rules.

References

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Ce-
sare Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-strength SMT solver.
In Dana Fisman and Grigore Rosu, editors, 28th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2022), pages
415–442, Munich, Germany, April 2022. Springer LNCS 13243.

David Harel. First-Order Dynamic Logic. Springer LNCS 68, 1979. 136 pp.

LECTURE NOTES SEPTEMBER 3, 2024

Dynamic Logic L3.9

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000. 476
pp.

Leonardo De Moura and Nikolaj Børner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2008), pages 337–
340, Budapest, Hungary, mar 2008. Springer LNCS 4963.

Fred B. Schneider. Enforceable security policies. ACM Transactions on Information
Systems Security, 3(1):30–50, February 2000.

LECTURE NOTES SEPTEMBER 3, 2024

Lecture Notes on

Semantics of Programs

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 4
September 5, 2024

1 Introduction

We begin by completing our initial tour of dynamic logic. Then we develop a se-
mantics of programs so we can prove our rules sound and invertible (where it
applies) with respect to the given semantic definition.

Unfortunately, the second part of this lecture is a bit technical, with a lot of new
notation. We go into this level of rigor because it is important to understand the
semantics of programs and how they relate to formal proofs. Only in this way can
we be confident that the verification of a programs actually guarantees safety and
other properties. It also provides the background and tools to consider extensions,
variations, and implementations.

2 Loops

How does a loop while P α execute? If P is true then we execute the loop body α

once, followed again by while P α. If P is false we just exit the loop. The following
rule suggests itself:

Γ ⊢ [if P then (α ; while P α) else skip]Q,∆

Γ ⊢ [while P α]Q,∆
[unwind]R

Here we made up a new program skip that doesn’t do anything. It behaves like
the unit of parallel composition in that skip ; α is equivalent to α. We could use
x := x instead, but that seems more complicated because it mentions a variable.

The problem with our first rule is that it replaces a program with a larger one,
so it is not reductive. We can use the rules we already have to simplify it a bit to

Γ, P ⊢ [α]([while P α])Q,∆ Γ,¬P ⊢ Q,∆

Γ ⊢ [while P α]Q,∆
[unfold]R

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.2

This is better, but in the first premise we still have to reason about exactly the same
program. So while these two rules are sound, their application is somewhat limited
as we will see in the next lecture.

If you think back to 15-122 Principles of Imperative Computation you may remem-
ber how we reasoned about loops: we used loop invariants. In that course, loop in-
variants (like pre- and post-conditions for functions) where themselves executable.
Here they are formulas and subject to logical reasoning. How do loop invariants
work? Let’s look at a trivial program:

while (x > 1) x := x− 2

under the precondition that (say) x ≥ 6. After the loop we know that if the initial x
was even, then in the poststate x must be 0, and if the initial x was odd, then in the
poststate x must be 1. For safety properties that may a bit specific, so here we only
want to ascertain that 0 ≤ x ≤ 1 in the poststate.

In dynamic logic we express this as the proposition

x ≥ 6→ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1

But how do we prove it? What is the loop invariant? Recall:

• The loop invariant must be true initially.

• The loop invariant must be preserved by the loop body, under the assumption
that the loop guard is true.

• The postcondition of the loop must be implied by the loop invariant together
with the negated loop guard.

If we can prove all three of these then we can conclude the postcondition of the
loop. In this example, we pick the loop invariant J to be x ≥ 0. Then we have to
prove:

True Initially x ≥ 6 ⊢ x ≥ 0

Preserved x ≥ 0, x > 1 ⊢ [x := x− 2] x ≥ 0

Implies Postcondition x ≥ 0,¬(x > 1) ⊢ 0 ≤ x ≤ 1

These are all easy to prove (with an oracle for arithmetic), reducing the one in the
middle in one step (using rule [:=]Rx′

) to

x ≥ 0, x > 1, x′ = x− 2 ⊢ x′ ≥ 0

Summarizing all of this with a rule yields the following, for an arbitrary loop
invariant J .

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.3

Γ ⊢ J,∆ J, P ⊢ [α]J J,¬P ⊢ Q

Γ ⊢ [while P α]Q,∆
[while]R

Sadly, since J is an arbitrary formula, this rule is not reductive. It would be okay,
however, if we forced the programmer to write J in the program (as we do in C0),
because then each premise only refers to components of the conclusion. When we
want to emphasize this point we may write

[whileJ P α]Q

where J is the loop invariant.
An important point about this rule is that we drop Γ and ∆ in the second and

third premise. This is because we don’t know how often we may have to go around
the loop. Preservation (the second premise) has to hold for any state we might
reach during the iteration, but the antecedents in Γ are only guaranteed before the
first iteration.

In our example, x ≥ 6 is only known to be true before the loop starts, and not
after each iteration. In fact, it may be false after the first iteration and therefore we
cannot use it to prove for the second and third premise. Similarly, the additional
succedents ∆ also must be dropped. Otherwise we could reformulate the goal

· ⊢ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1,¬(x ≥ 6)

and then use ¬R rule to turn the succedent ¬(x ≥ 6) into the (unwarranted) an-
tecedent x ≥ 6.

Putting all of this together, we can prove our program as follows.

(by arithmetic)

x ≥ 6 ⊢ x ≥ 0

(by arithmetic)

x ≥ 0, x > 1, x′ = x− 2 ⊢ x′ ≥ 0

x ≥ 0, x > 1 ⊢ [x := x− 2]x ≥ 0
[:=]Rx

′ (by arithmetic)

x ≥ 0,¬(x > 1) ⊢ 0 ≤ x ≤ 1

x ≥ 6 ⊢ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1
[while]R∗

· ⊢ x ≥ 6→ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1
→R

(∗) with loop invariant J(x) = (x ≥ 0)

You can find a summary of the relevant rules we have intuited in Figure 1. The
[unfold]R rule has a special status because it is not reductive (but will still turn out
to be sound and useful). The [while]R rules is reductive only if the loop invariant
J is specified in the syntax, as indicated by the subscript.

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.4

Γ, P ⊢ [α]Q,∆ Γ,¬P ⊢ [β]Q,∆

Γ ⊢ [if P then α else β]Q,∆
[if]R

Γ, x′ = e ⊢ Q(x′),∆

Γ ⊢ [x := e]Q(x),∆
[:=]Rx′

Γ ⊢ [α]([β]Q),∆

Γ ⊢ [α ; β]Q,∆
[;]R

Γ ⊢ J,∆ J, P ⊢ [α]J J,¬P ⊢ Q

Γ ⊢ [whileJ P α]Q,∆
[while]R

Γ, P ⊢ [α]([while P α])Q,∆ Γ,¬P ⊢ Q,∆

Γ ⊢ [while P α]Q,∆
[unfold]R

Figure 1: Some Rules for Dynamic Logic

3 Semantics of Expressions

Recall from Lecture 3

Variables x, y, z

Constants c ::= . . . ,−1, 0, 1, . . .
Expressions e ::= c | x | e1 + e2 | e1 ∗ e2 | . . .
Programs α, β ::= x := e | α ; β | if P then α else β | while P α

Formulas P,Q ::= e1 ≤ e2 | e1 = e2 | . . .
| P ∧Q | P ∨Q | P →Q | P ↔ Q | ¬P | ⊤ | ⊥
| [α]Q | ⟨α⟩Q

In order to give semantics to formulas we also need to give semantics to programs
and expressions. We start with expressions. We assume (for now) that the value
of an expression is always an integer. We also need to recall that states map all
variables to integers and write ω(x) for the value of variable x in state ω.

Generally, we write JsomethingK for the semantic meaning of “something”, so
this notation will be overloaded. For expressions, it depends on a state and returns
an integer. We write this as ωJeK = c.

ωJcK = c

ωJxK = ω(x)
ωJe1 + e2K = ωJe1K + ωJe2K
ωJe1 ∗ e2K = ωJe1K× ωJe2K

There may be more cases if we consider additional operators. The operators inside
the semantic brackets are syntax, the operators outside the semantic brackets are
operations on integers. For example, in a state ω where ω(x) = 4 we calculate

ωJx+ xK = ωJxK + ωJxK = 4 + 4 = 8

LECTURE NOTES SEPTEMBER 5, 2024

https://15316-cmu.github.io/2024//lectures/03-dynamiclogic.pdf

Semantics of Programs L4.5

4 Semantics of Programs

We interpret a program as denoting a relation between a prestates and poststates.
Because of loops, for a given prestate there may be zero or one poststates. We again
use semantic brackets, writing ωJαKν if the program α relates the prestate ω to the
poststate ν. We write the program in the middle because, generally in mathematics,
we like to write relations in infix form (like e1 ≤ e2).

The definition follows, mostly, the way a program would execute and we only
really have to think much when we come to loops.

Assignment. An assignment x := e will evaluate e and then update the state so it
now maps x to the value of e. We define the notation ω[x 7→ c] with

(ω[x 7→ c])(x) = c

(ω[x 7→ c])(y) = ω(y) provided x ̸= y

Note that the notation ω[x 7→ c] has nothing to do with the formula [α]Q, square
brackets are overloaded as well.

Then we define

ωJx := eKν iff ω[x 7→ c] = ν where ωJeK = c

Sequential Composition. We execute α ; β by first executing α and then β in the
poststate of α.

ωJα ; βKν iff ωJαKµ and µJβKν for some state µ

This definition if implies that if α has no poststate (that is, doesn’t terminate) then
α ; β doesn’t either, which is intuitively correct.

Conditionals. For conditionals we need to appeal to the meaning of formulas,
because we need to know if the condition is true or false.

ωJif P then α else βKν iff ω |= P and ωJαKν or
ω ̸|= P and ωJβKν

To be consistent, the meaning of a proposition should really be a truth value de-
noted by ωJP K, but there is a long tradition of writing ω |= P which means that P
is true in state ω. Such a state is often called a model in which P is true.

Loops. As you might expect, loops are the trickiest. Here is a possible recursive
definition.

ωJwhile P αKν iff ω |= P and ωJαKµ and µJwhile P αKν or
ω ̸|= P and ω = ν

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.6

This definition is recursive in the sense that the program also appears on the right.
It could then be ambiguous whether and for which states ωJwhile ⊤ skipKν should
be true.

We can use a more explicit inductive definition using an auxiliary relation Jwhile P αKn

that prescribes the number of iterations to be n.

ωJwhile P αKν iff ωJwhile P αKnν for some n ∈ N

ωJwhile P αKn+1ν iff ω |= P and ωJαKµ and µJwhile P αKnν
ωJwhile P αK0ν iff ω ̸|= P and ω = ν

If there is no such n, then there is no poststate for the given prestate.

5 Semantics of Formulas

The semantics of formulas in a given state must appeal to the meaning of expres-
sions and the meaning of programs. Therefore the meanings of programs and for-
mulas mutually depend on each other. We start with some simple cases.

ω |= e1 ≤ e2 iff ωJe1K ≤ ωJe2K
ω |= e1 = e2 iff ωJe1K = ωJe2K

ω |= P ∧Q iff ω |= P and ω |= Q

ω |= P ∨Q iff ω |= P or ω |= Q

ω |= P →Q iff ω |= P implies ω |= Q

ω |= ¬P iff ω ̸|= P

ω |= P ↔ Q iff ω |= P iff ω |= Q

For programs, we have to recall the informal definition from the previous lecture.
[α]Q is true if Q is true in every poststate of α. Because a nonterminating program
does not have a poststate, this is a statement about the partial correctness of the
program α. Conversely, ⟨α⟩Q is true if Q is true in some poststate of α.

ω |= [α]Q iff for every ν with ωJαKν we have ν |= Q

ω |= ⟨α⟩Q iff there is a ν with ωJαKν and ν |= Q

Now we say P is valid (written as |= P) if ω |= P for every state ω. (Recall that
all states are defined on all variables, so this is well-defined.)

A sequent P1, . . . , Pn ⊢ Q1, . . . , Qm is valid if for every state ω, whenever for all
antecedents Pi we have ω |= Pi then for some succedent Qj we have ω |= Qj .

6 Quantification and Substitution1

1Not covered in lecture

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.7

So far, we haven’t introduced or used quantifiers, except the implicit quantification
over all states in the definition of validity. It is very tempting to define that ω |=
∀x. P (x) if ω |= P (c) for every c ∈ Z. Here, P (c) is the notation of substituting c for
every occurrence of x in P (x).

This makes sense if P (x) is a formula of pure arithmetic. But if P (x) makes
reference to programs this doesn’t quite work. For example, given our earlier proof
we might expect that

∀x. x ≥ 6→ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1

is true in every state. But we cannot substitute an integer for x for the same reason
we needed to drop the antecedents Γ (and the succedents ∆) in the rule [while]R:
the guard of the loop implicitly refers to the x in many states (every state reachable
by executing loop) and not just the initial state.

We therefore define instead:

ω |= ∀x. P (x) iff ω[x 7→ c] |= P (x) for every c ∈ Z

ω |= ∃x. P (x) iff ω[x 7→ c] |= P (x) for some c ∈ Z

The proof rules then become a bit strange, but fortunately we will often be in the
quantifier-free fragment, or can delegate quantifier reasoning to the arithmetic or-
acle. In both of these rules, the x′ has to be chosen fresh (that is, it doesn’t appear
in the conclusion or in e). Also, for technical reasons we need to keep a copy of
the existential in the ∃R rule, just as a universally quantified antecedent may be
needed more than once.

Γ ⊢ P (x′),∆

Γ ⊢ ∀x. P (x),∆
∀Rx′

Γ, ∀x. P (x), x′ = e, P (x′) ⊢ ∆

Γ, ∀x. P (x) ⊢ ∆
∀Lx′

Γ, x′ = e ⊢ P (x′), ∃x. P (x),∆

Γ ⊢ ∃x. P (x),∆
∃Rx′

Γ, P (x′) ⊢ ∆

Γ, ∃x. P (x) ⊢ ∆
∃Lx′

Reading the rules ∀Lx′

and ∃Rx′

bottom-up, we can freely choose the expression e

to instantiate the quantifier with as long as it doesn’t mention x′.

7 Rules versus Axioms

In general, it seems more convient to reason with rules since the rules of the sequent
calculus give clear view of the state of an incomplete proof. In some situations,
though, we can pack a lot of information into axioms, by which we mean valid
formulas.

Recall the right rule for sequential composition.

Γ ⊢ [α]([β]Q),∆

Γ ⊢ [α ; β]Q,∆
[;]R

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.8

We reduce the goal of proving [α ; β]Q to the goal of proving [α]([β]Q). What would
be a corresponding left rule [;]L? What can we deduce from knowing [α ; β]Q?
It looks as if we should just be able to replace this with the antecedent [α]([β]Q)
because [α ; β]Q and [α]([β]Q) are equivalent.

Γ, [α]([β]Q) ⊢ ∆

Γ, [α ; β]Q ⊢ ∆
[;]L

Here is a general observation: if P and Q are equivalent (in the sense that P ↔
Q is valid) then rules such as

Γ ⊢ Q,∆

Γ ⊢ P,∆

Γ, Q ⊢ ∆

Γ, P ⊢ ∆

are both sound and invertible. That’s because P and Q are always either both false
or both true, regardless of the state because the bi-implication P ↔ Q is valid.

In order to obtain good left and right rules from valid equivalences we just have
to make sure the rules are reductive. As an example, the [;]R and [;]L rules can both
be constructed from the following equivalence.

|= [α ; β]Q↔ [α]([β]Q)

Let’s prove this. We start with the right-to-left direction, which implies the sound-
ness of [;]R and invertibility of [;]L. We set up the proof:

ω |= [α]([β]Q) (assumption)
. . .

ω |= [α ; β]Q (to show)

We now walk through the proof in individual steps, narrowing the gap, sometimes
from below and sometimes from above. Typically, one only presents the end result
and the reader has to figure out how one might have obtained it.

By definition, the conclusion holds if for every state ν such that ωJα ; βKν we
have ν |= Q. Now our proof state is (highlighting the new parts in blue):

ω |= [α]([β]Q) (1, assumption)
ωJα ; βKν for some ν (2, assumption)
. . .

ν |= Q (to show)
ω |= [α ; β]Q (by defn. of |=)

By definition, assumption 2 is true if there is some intermediate state µ such that
ωJαKµ and µJβKν. Let’s write this into the proof as well.

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.9

ω |= [α]([β]Q) (1, assumption)
ωJα ; βKν for some ν (2, assumption)
ωJαKµ and µJβKν for some µ (3, from 2 by defn. of J−K)
. . .

ν |= Q (to show)
ω |= [α ; β]Q (by defn. of |=)

Next: from assumption 1 and the fact that ωJαKµ we can conclude that µ |= [β]Q,
again just by the definition of |=.

ω |= [α]([β]Q) (1, assumption)
ωJα ; βKν for some ν (2, assumption)
ωJαKµ and µJβKν for some µ (3, from 2 by defn. of J−K)
µ |= [β]Q (4, from 1 and 3(a) by defn. of |=)
. . .

ν |= Q (to show)
ω |= [α ; β]Q (by defn. of |=)

Now we use the same argument knowing that µJβKν and µ |= [β]Q to conclude
that ν |= Q. But that’s what we needed to show!

ω |= [α]([β]Q) (1, assumption)
ωJα ; βKν for some ν (2, assumption)
ωJαKµ and µJβKν for some µ (3, by defn. of J−K from 2)
µ |= [β]Q (4, from 1 and 3(a) by defn. of |=)
ν |= Q (5, from 4 and 3(b) by defn. of |=)
ω |= [α ; β]Q (from 5 and 2 by defn. of |=)

We see the proof is actually quite straightforward. We just have to carefully unwind
the definitions.

Here is the proof in the other direction.2 We set up:

ω |= [α ; β]Q (1, assumption)
. . .

ω |= [α]([β]Q) (to show)

We show the filled-in proof. You can probably walk through it in the order we
made the deductions.

ω |= [α ; β]Q (1, assumption)
ωJαKµ for some µ (2, assumption)
µJβKν for some ν (3, assumption)
ωJα ; βKν (4, from 2 and 3 by defn. of J−K
ν |= Q (5, from 1 and 4 by defn of |=)
µ |= [β]Q (6, from 5 and 3 by defn of |=)
ω |= [α]([β]Q) (7, from 6 and 2 by defn of |=)

2not shown in lecture

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.10

At this point we have shown that the right and left rules for the sequential
composition of programs in a box modality are sound and invertible.

8 Some Axioms for Dynamic Logic3

Based on the insights from the previous section and the rules for programs in dy-
namic logic, we can conjecture the following axioms. And, indeed, they are all
valid, even though we don’t show the proofs. We write the postfix “A” to indicate
that what we are naming is not a rule but an axiom.

[:=]A [x := e]Q(x)↔ ∀x′.x′ = e→Q(x′) (x′ not in e or Q(x))
[;]A [α ; β]Q↔ [α]([β]Q)
[if]A [if P then α else β]Q↔ (P → [α]Q) ∧ (¬P → [β]Q)
[unfold]A [while P α]↔ (P → [α][while P α]Q) ∧ (¬P →Q)

Because these axioms are valid biconditionals, we obtain correct left and right rules
for the sequent calculus, with the rules for [unfold] being somewhat unsatisfactory
since they are not reductive.

Unfortunately, the rule [while]R including loop invariants can’t be easily turned
into an axiom. Recall:

Γ ⊢ J,∆ J, P ⊢ [α]J J,¬P ⊢ Q

Γ ⊢ [whileJ P α]Q,∆
[while]R

We won’t propose a corresponding left rule for this because it takes us into the
realm of total correctness and proving termination, which is beyond the scope of
this course.

We won’t pursue it further, but for the curious, it is possible to obtain an ax-
iom for the direction that corresponds to soundness of [while]R, but we need an
additional logical operator □P .

[while]A [while P α]Q← J ∧□(J ∧ P → [α]J) ∧□(J ∧ ¬P →Q)

The new component here is the modality □P which is defined semantically by
ω ⊢ □P iff ν ⊢ P for every state ν. Needing to prove this is what removes Γ and ∆
in the bottom-up reading of [while]R.

As an aside, the problem with substitution and the □ modality from modal
logic is nothing new but has concerned philosophers long before computer science
and dynamic logic. See, for example, Garson [2000, Section 16].

9 Summary

We summarize the semantic definitions and axioms; the sequent calculus rules can
be found in Figure 1.

3Only [;]A covered in lecture; the remainder may be useful for reference or further reading.

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.11

ωJcK = c

ωJxK = ω(x)
ωJe1 + e2K = ωJe1K + ωJe2K
ωJe1 ∗ e2K = ωJe1K× ωJe2K

Figure 2: Semantics of Expressions

ωJx := eKν iff ω[x 7→ c] = ν where ωJeK = c

ωJα ; βKν iff ωJαKµ and µJβKν for some state µ

ωJif P then α else βKν iff ω |= P and ωJαKν or
ω ̸|= P and ωJβKν

ωJwhile P αKν iff ωJwhile P αKnν for some n ∈ N

ωJwhile P αKn+1ν iff ω |= P and ωJαKµ and µJwhile P αKnν
ωJwhile P αK0ν iff ω ̸|= P and ω = ν

Figure 3: Semantics of Programs

ω |= e1 ≤ e2 iff ωJe1K ≤ ωJe2K
ω |= e1 = e2 iff ωJe1K = ωJe2K

ω |= P ∧Q iff ω |= P and ω |= Q

ω |= P ∨Q iff ω |= P or ω |= Q

ω |= P →Q iff ω |= P implies ω |= Q

ω |= ¬P iff ω ̸|= P

ω |= P ↔ Q iff ω |= P iff ω |= Q

ω |= [α]Q iff for every ν with ωJαKν we have ν |= Q

ω |= ⟨α⟩Q iff there is a ν with ωJαKν and ν |= Q

Figure 4: Semantics of Formulas

LECTURE NOTES SEPTEMBER 5, 2024

Semantics of Programs L4.12

References

James Garson. Modal logic. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy. Spring 2024 edition edi-
tion, 2000. URL https://plato.stanford.edu/archives/spr2024/

entries/logic-modal/.

LECTURE NOTES SEPTEMBER 5, 2024

https://plato.stanford.edu/archives/spr2024/entries/logic-modal/
https://plato.stanford.edu/archives/spr2024/entries/logic-modal/

Lecture Notes on

Proving Safety

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 5
September 10, 2024

1 Introduction

So far we have focused attention on proving general properties of programs. Such
properties are certainly relevant to safety, but how does this now translate to safety?
And how exactly do we then prove safety? Looking at our language up to now, all
constructs are “safe”. For example, we operate on integers, so there is no overflow.
In the next lecture we will consider out-of-bounds memory access as a quintessen-
tial unsafe operation; in this lecture we consider division by 0. In a language like
C, the behavior of division by 0 is undefined. For C, undefined behavior gives the
compiler a lot of leeway. For example, it could raise an exception. But it could also
optimize (1/0) ∗ 0 to just 0 instead of raising an exception. Or it could exhibit some
other unexpected behavior that could give an attacker access to your machine.

Because “undefined” has different meanings in different contexts, we avoid this
term. Instead we use:

Unsafe: If an operation is unsafe we do not know what an implementation of a
language might do. In particular, we consider all safety properties as being
violated by an unsafe operation. In C, this would be called undefined behavior.

Indeterminate: If an operation is indeterminate it has a valid outcome, but the lan-
guage specification does not say what precisely this outcome is. In C, the
order of evaluation for many expressions is unspecified so that there may be
many outcomes that are all correct.

Safe: The program performs no unsafe operation. This includes situations where
the outcome may be indeterminate.

Basically, we fix a subset of all safety properties, namely those that arise from a
single operation deemed unsafe.

LECTURE NOTES SEPTEMBER 10, 2024

Proving Safety L5.2

This particular (even if restricted) concept of safety already raises the issue that
dynamic logic only relates an initial state to a final state, but does not explicitly
mention any intermediate states. So we have to start by extending dynamic logic
so it can reflect the concept of an unsafe program. We do not have an explicit
predicate inside the logic that expresses a program α is safe, but it will nevertheless
be easy to write formulas that imply safety.

2 Unsafe Programs

We might deem expressions such as 1/0 as inherently unsafe. But formulas include
expressions, and it is unclear what “unsafe formulas” would be, or how we reason
with them logically and correctly. It is actually possible to design logics where for-
mulas may be true or false or undefined, that is, may not have a truth value (see, for
example, the article about Free Logic [Nolt]). This would be a rather drastic revision
and further depart from what theorem provers and decision procedures offer. An-
other standard path is to consider such expressions as indeterminate. In that case,
we simply won’t be able to deduce much about indeterminate expressions. For
example, an axiom about the quotient a/b and remainder a% b might state

0 ≤ r < b ∧ a = q ∗ b+ r → a/b = q ∧ a% b = r

The antecedent of the implication cannot be satisfied if b = 0 so in that case we
can’t deduce anything about the nature of a/b or a% b except that they are integers
(since all variables here are typed as integers).

Since expressions are shared between formulas and programs we therefore sim-
ply declare all expressions to be safe, although possibly indeterminate. An intu-
itively unsafe expression then is elevated to the level of commands. Here we use
the terminology command for a primitive part of a program such as assignment
(x := e) or skip (which has no effect). Commands are included in the grammar
for programs. Our new form of command is x := divide e1 e2. This is unsafe if e2
denotes 0; otherwise it assigns to x the result of e1/e2 (integer division).

We emphasize: divide e1 e2 is not a new expression (because all expressions
should remain safe), but x := divide e1 e2 is a new command. This means an
ordinary assignment such as x := x/y + 1 is not part of our language. It would
instead have to be expressed as t := divide x y ; x := t + 1 where t is a fresh
variable (often called a temporary variable in a compiler).

In order to capture unsafe behavior, we semantically characterize unsafe pro-
grams using the form

ωJαK

which means that α is unsafe when executed starting in state ω. We can think of
the symbol as denoting an unsafe state, different from the states we have been
using so far (ω, µ, ν) from which the program can proceed as expected. Formally,

LECTURE NOTES SEPTEMBER 10, 2024

Proving Safety L5.3

we don’t change our definition of state as a total map from variables to integers,
which is why we instead introduce a new notation and new relation. Starting with
our new command, we have the following two clauses:

ωJx := divide e1 e2Kν iff ωJe1K = a, ωJe2K = b, c = a/b and ν = ω[x 7→ c]
provided b ̸= 0

ωJx := divide e1 e2K iff ωJe2K = 0

We need to be careful (and want to prove) that there is no program α such that
ωJαKν for some ν and at the same time ωJαK . That is, unsafe programs never have
a final state, and programs with a final state are never unsafe. On the other hand, it
is possible for a program to have no final state and yet be safe—these are programs
that execute safely but never terminate.

We continue by defining when other programs besides division are unsafe. We
do not need to change the previous definition for when a program relates a prestate
to a poststate, because it does not change (see Lecture 4, Figure 3 on page L4.11 for
reference).

Assignment. Since expressions are never unsafe, assignments are never unsafe:

ωJx := eK never

To make our semantic definitions more uniform, we will often state this equiva-
lently as

ωJx := eK iff false

Sequential composition. α ; β is unsafe if either α is unsafe, or β is unsafe. In the
latter case, we have to specify that the poststate of α is the prestate of β.

ωJα ; βK iff either ωJαK
or ωJαKµ and µJβK for some µ

Conditional. if P then α else β is unsafe if α or β are unsafe, depending on P .
Fortunately, we don’t have to worry about P being unsafe: formulas are always
either true or false.

ωJif P then α else βK iff either ω |= P and ωJαK
or ω ̸|= P and ωJβK

LECTURE NOTES SEPTEMBER 10, 2024

https://15316-cmu.github.io/2024//lectures/04-semantics.pdf

Proving Safety L5.4

While loop. while P α is unsafe if α is unsafe after any number of iterations. So
we proceed as in the prior semantic definition, using an auxiliary form.

ωJwhile P αK iff ωJwhile P αKn for some n ∈ N

ωJwhile P αKn+1 iff either ω |= P and ωJαK
or ω |= P and ωJαKµ and µJwhile P αKn

for some µ

ωJwhile P αK0 iff false

3 Reasoning about Safety

Our previous definition for the truth of [α]Q was the following:

ω |= [α]Q iff for every ν with ωJαKν we have ν |= Q

This is a statement about partial correctness of α because if α does not terminate,
there is no such ν so the statement is vacuously true.

With unsafe behavior we have a similar situation: An unsafe program has no
poststate. If we leave the definition as is, then an unsafe program would satisfy
every postcondition, which is clearly not desirable. So we modify our definition to
add the condition that the program be safe (that is, not unsafe).

ω |= [α]Q iff for every ν with ωJαKν we have ν |= Q
and not ωJαK

The second part of this definition is how we solve that problem that in dynamic
logic we only reason about the prestate and the poststate of the program. If it is
unsafe, we should be not be able to prove the anything about the poststate. This
includes the universally true proposition ⊤.

This means if we want to prove that a program α is safe given a precondition P
we “just” need to prove

P → [α]⊤

Note how this is different from general correctness where we have a postcondition
Q. Of course, during the (formal) proof the formula above we may encounter other
kinds of postconditions. Consider, for example, the case where α is α1 ; α2. Or the
case where safety of a division requires a loop invariant.

But how do unsafe programs come into the meaning of [α]Q? We have to pre-
vent such formulas to be provable when α is unsafe. For the division command we
do this as follows.

Γ ⊢ ¬(e2 = 0),∆ Γ, x′ = e1/e2 ⊢ Q(x′),∆

Γ ⊢ [x := divides e1 e2]Q(x),∆
[divides]Rx

′

LECTURE NOTES SEPTEMBER 10, 2024

Proving Safety L5.5

where x′ must be chosen fresh (that is, it does not appear in e1, e2, Q(x), Γ, or ∆).
Two important points about this rule:

1. We cannot apply this rule unless we can prove that e2 ̸= 0, that is, the division
is safe.

2. The expression e1/e2 (denoting integer division) that we add to Γ is indetermi-
nate in the manner explained in the introduction. So while it is technically an
expression, we do not allow it in programs, only in formulas like x′ = e1/e2.
If we did allow the program to use it directly, our language would then have
indeterminate results because the result of a/b is an indeterminate integer.
While this could be allowed as long as we carefully distinguish between un-
safe and indeterminate behavior, we avoid this complication here.

We do not prove the soundness or invertibility of this rule, but we will prove
a related result in Section 6. As an axiom, by the way, the property of the divide

program would be written as

[x := divides e1 e2]Q(x) ↔ ∀x′. ¬(e2 = 0) ∧ x′ = e1/e2 →Q(x′)

A pleasant part of this approach is that the axioms and rules we derived so far can
remain unchanged, essentially because they only rely on safe behavior. A premise
involving a program will simply not be provable if its behavior is unsafe.

4 A Sample Proof of Safety

Proofs of safety can often be significantly simpler than proof of correctness. On the
other hand, sometimes safety depends critically on some other correctness prop-
erty.

We reconsider the example from Lecture 4.

x ≥ 6→ [while (x > 1) x := x− 2] 0 ≤ x ≤ 1

To prove this, we required a loop invariant, and x ≥ 0 was sufficient.
We can modify this to introduce a division, and just prove safety (so the post-

condition is ⊤.
x ≥ 6→ [while (x > 1) x := divide x 2]⊤

After one step (→R) it remains to prove

x ≥ 6 ⊢ [while (x > 1) x := divide x 2]⊤

Here, we pick the weakest loop invariant we can think of, namely J = ⊤. Then we
have to prove:

True Initially: x ≥ 6 ⊢ ⊤, which is manifestly valid.

LECTURE NOTES SEPTEMBER 10, 2024

https://15316-cmu.github.io/2024//lectures/04-semantics.pdf

Proving Safety L5.6

Preserved: We lose the antecedent x ≥ 6, but we add the loop invariant and the
loop guard. So we have to show

⊤, x > 1 ⊢ [x := divide x 2]⊤

Using the rule [divide]R, this reduces to showing

⊤, x > 1 ⊢ ¬(2 = 0)

and
⊤, x > 1, x′ = x/2 ⊢ ⊤

Both of these are manifestly valid.

Implies Postcondition: Again, without the antecedent, but this time with the negated
loop guard, we have to prove the postcondition ⊤. So:

⊤,¬(x > 1) ⊢ ⊤

Again, this is easily seen to be true.

So to prove safety, we only need the very weakest loop invariant in this example
(which corresponds to having no significant loop invariant at all).

This would still be true for the following modified program:

x ≥ 6 ⊢ [while (x > 1) {y := divide y x ; x := x− 2}]⊤

By the loop guard we see that x > 1 inside the loop body, so the division is safe.
However, if we had written divide x y then there is an immediate counterexample
with y = 0.

5 A Generic Unsafe Command

In the example of division, unsafe behavior comes down to a particular operation.
In general, though, it may be the combination of some operations that makes a
program unsafe. For example, a program should not be able to write to an output
stream after it has been closed. So it is not the output operation per se, but a condi-
tion associated with it. Or we may not be able to read from an input stream if we
are not authorized to do so. We can capture such conditions more generically with
the command

assert P

where P is a formula that may depend on variables. assert P is unsafe if P is false;
otherwise it is safe but does not change the state.

ωJassert P Kν iff ω |= P and ν = ω

ωJassert P K iff ω ̸|= P

LECTURE NOTES SEPTEMBER 10, 2024

Proving Safety L5.7

It should be clear that we preserve the property that unsafe programs have no
poststate.

Among other things, we could rewrite our programs using assert commands.
For example, if we replaced x := divide e1 e2 by assert ¬(e2 = 0) ; x := e1/e2 the
two programs would have the same meaning in every state (either both unsafe, or
both safe and determinate).

How do we reason about [assert P]Q? If P is true, then the postcondition Q
must be true. If P is false, then Q is irrelevant: the formula [assert P]Q is always
false. These two conditions are neatly captured by the axiom

[assert P]Q ↔ P ∧Q

Here are the corresponding right and left rules of the sequent calculus.

Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ [assert P]Q,∆
[assert]R

Γ, P,Q ⊢ ∆

Γ, [assert P]Q ⊢ ∆
[assert]L

Let’s prove that the axiom is actually valid. From that, the soundness of the rules
as previously explained for the axiom [;]A for sequential program composition.

Theorem 1 The axiom
[assert P]Q ↔ P ∧Q

is valid.

Proof: We start with the proof from right to left. We set up, for an arbitrary state ω:

ω |= P ∧Q (assumption)
. . .
ω |= [assert P]Q (to show)

In order to show the conclusion, we have to show two properties: (a) if ωJassert P Kν
then ν |= Q, and (b) not ωJassert P K .

(a) follows, since ν = ω by definition of J−K and ω |= Q from our assumption.
(b) follows by definition of since ω |= P from from our assumption.

For the proof from left to right, we set up

ω |= [assert P]Q (assumption)
. . .
ω |= P ∧Q (to show)

By the definition of |=, the assumption gives us (a) for every ν with ωJassert P Kν
we have ν |= Q, and (b) not ωJassert P K .

From (b) we know ω |= P (otherwise assert P would be unsafe). Therefore, by
definition of J−K and our assumption we have ω = ν, so ω |= Q.

Taking these two together we have ω |= P ∧Q. □

LECTURE NOTES SEPTEMBER 10, 2024

Proving Safety L5.8

6 A Theorem about Safety1

Theorem 2 (Soundness of Dynamic Logic with Unsafe Programs) All the rules of
the sequent calculus are sound, and all the axioms we stated are valid.

Proof: By considering each case and reasoning along similar lines as in the sample
proofs of such properties in lecture. □

We can rigorously state that if we can prove some postcondition for α then α is
safe. The theorem assumes that we have proved the soundness of all the sequent
calculus rules (or axioms) we use in the formal proof (as claimed in the preceding
theorem).

Theorem 3 (Safety) If · ⊢ P → [α]Q then there is no ω with ω |= P such that ωJαK .

Proof: Assume · ⊢ P → [α]Q and for some ω we have ω |= P and ωJαK . We have
to show a contradiction.

By soundness of the sequent calculus we have ω |= P → [α]Q. Since ω |= P we
obtain ω |= [α]Q. By definition, this implies that not ωJαK , which is a contradic-
tion. □

References

John Nolt. Free logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Fall 2021 edition edition. URL https://plato.stanford.edu/

entries/logic-free/.

1mentioned, but not explicitly stated in lecture

LECTURE NOTES SEPTEMBER 10, 2024

https://plato.stanford.edu/entries/logic-free/
https://plato.stanford.edu/entries/logic-free/

Lecture Notes on

Memory Safety

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 6
September 12, 2024

1 Introduction

The classic buffer overflow attack (about which you learn in 15-213 Computer Systems)
allows a program to take control of your machine while otherwise innocuous code
is executed. It exploits that accessing memory that hasn’t been explicitly allocated
by a program is undefined behavior in C and therefore unsafe.

In this lecture we define a simplistic model of memory and introduce memory
write and read operations into our language. We then define unsafe behavior and
investigate how to prove safety of programs accessing memory.

What can we do if we cannot prove safety, but we’d still like to run a program?
One option is to rewrite the program by checking that any memory access is in
bounds before running it. We show how this can be done for our language, and
prove safety for the resulting program. This is one of techniques used in sandboxing
which refers to running untrusted programs in a manner that prevents them from
doing damage (“inside a sandbox”). There are commercial tools such as Intel’s Pin
that can instrument binary code for Intel instruction set architectures.

2 Writing and Reading Memory

Mathematically, we model memory as a map from Z (the index domain) to Z (the
value domain). It is total, but may be indeterminate on some indices. In the pro-
gramming language we assume indices are limited to the range from 0 to a fixed
U, and accessing memory outside these bounds in unsafe.

As explained in Lecture 5, we would like to keep expressions safe, but possibly
indeterminate. Unsafe behavior is then exhibited only by commands and the pro-
grams constructed from them. Sticking to this approach, we add a new kind of
variable, M , that stands for memory, and the new commands

LECTURE NOTES SEPTEMBER 12, 2024

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://15316-cmu.github.io/2024//lectures/05-safety.pdf

Memory Safety L6.2

• M [e1] := e2 write e2 into memory M at address e1. This is unsafe if the
value of e1 is out of bounds.

• x := M [e] set x to the contents of memory at address e into x. This is unsafe
if the value of e is out of bounds.

The design decision that memory access takes place via commands means that you
have to rewrite hypothetical code such as

M [x] := (M [x− 1] +M [x+ 1])/2

in the more verbose form

t1 := M [x− 1] ;
t2 := M [x+ 1] ;
t3 := divide (t1 + t2) 2 ;
M [x] := t3

Next, we need to rigorously define the semantics of the new commands so that
(a) we can implement them, and (b) we can prove soundness of our axioms and
rules to reason about them (including their safety).

The first issue is how to track the contents of memory. For that purpose, we
change our definition of the state ω. So far the state has been a total function from
variables to integers, ω : Var → Z where Var is the (countably infinite) set of vari-
ables. Now variables can also map to memory, which is a total function from inte-
gers to integers.

ω : Var→ (Z ∪ (Z→ Z))

We assume that programs map lowercase variables to integers and uppercase vari-
ables to memory, so that there is never any confusion between the two forms. Math-
ematically, we use the letter H : Z → Z (suggesting a heap). All our previous se-
mantic definitions remain unchanged since all variables in those definitions stand
for integers.

We begin with safe and unsafe memory reads.

ωJx := M [e]Kν iff ωJeK = i and ωJMK = H and ν = ω[x 7→ H(i)]
provided 0 ≤ i < U

ωJx := M [e]K iff ωJeK = i and not 0 ≤ i < U

It should be clear that unsafe programs continue to satisfy no postcondition.
Memory write follows the same intuition, we just have to make sure to suitably

update the map defining the state of memory.

ωJM [e1] := e2Kν iff ωJe1K = i and ωJe2K = a and ωJMK = H and
H ′ = H[i 7→ a] and ν = ω[M 7→ H ′]
provided 0 ≤ i < U

ωJM [e1] := e2K iff ωJe1K = i and not 0 ≤ i < U

LECTURE NOTES SEPTEMBER 12, 2024

Memory Safety L6.3

3 Reasoning about Memory1

In order to reason about memory we need to introduce expressions that capture
what we know about the state of memory. Mathematically, this leads us to the
theory of arrays [McCarthy, 1962] which we can view as being constructed on top
of the theory of arithmetic we have assumed so far. Because of the importance of
arrays in imperative programming, some efficient decision procedures have been
devised (see, for example, Stump et al. [2001]) and implemented in provers such as
Z3 or the CVC family.

In the theory of arrays we have two expressions read H i and write H i a
where H denotes an array, i and index into an array, and a a value stored in the
array. Note that the expression write H i a denotes a “new” array; semantically
H[i 7→ a]. For us, both the index domain and the values are integers.

There are two axioms, called read over write, that allow us to reason about these
expressions.

i = k → read (write H i a) k = a
i ̸= k → read (write H i a) k = read H k

In addition we have an axiom of extensionality which states that two arrays are equal
if they agree on all elements. In our use of the theory of arrays, the quantifier ranges
over integers.

(∀i.H(i) = H ′(i)) → H = H ′

As usual, we treat the new expressions as always denoting either an array or an
integer, although the value may sometimes be indeterminate.

The right rules of the sequent calculus for these new commands are now rela-
tively straightforward.

Γ ⊢ 0 ≤ e < U,∆ Γ, x′ = read M e ⊢ Q(x′),∆

Γ ⊢ [x := M [e]]Q(x),∆
[read]Rx

′

As for assignment, the x′ must be chosen fresh in [read]Rx
′

. The same is true for
M ′ in the following rule.

Γ ⊢ 0 ≤ e1 < U,∆ Γ,M ′ = write M e1 e2 ⊢ Q(M ′),∆

Γ ⊢ [M [e1] := e2]Q(M),∆
[write]RM

′

Even if an program can only mention a single array M , while reasoning about a
program we need to be able to relate arrays before and after an assignment. There-
fore, the knowledge about M in the antecedents Γ (or succedents ∆) must not con-
flict with knowledge about the state of the array after the write operation and M ′

must be fresh.
The aspect of these rules critical for safety is the first premise that requires us to

prove safety (independently of the postcondition).

1only part of the presented in lecture; the remainder promised and provided here for reference

LECTURE NOTES SEPTEMBER 12, 2024

Memory Safety L6.4

4 A Small Example of Memory Safety

Consider the following program to initialize memory up to n:

i := 0 ; while (i < n){M [i] := i ; i := i+ 1 }

This is patently unsafe: just consider n = U+1. Then the last time around the loop
we will have i = U, leading to an unsafe memory access at M [U].

We can add a precondition n ≤ U and then try to prove safety with

n ≤ U→ [i := 0 ; while (i < n){M [i] := i ; i := i+ 1 }]⊤

We could try i ≤ n but that’s insufficient. Here is what preservation would require:

i ≤ n, i < n ⊢ [M [i] := i ; i := i+ 1]i ≤ n

We note two problems: (1) safety will fail because we cannot prove that 0 ≤ i and
(2) we have lost the precondition n ≤ U so we also cannot conclude that i < U.

Let’s try a more complex invariant:

0 ≤ i ≤ n ≤ U

Now preservation requires

0 ≤ i ≤ n ≤ U, i < n ⊢ [M [i] := i ; i := i+ 1] (0 ≤ i ≤ n ≤ U)

This reduces in two steps to

0 ≤ i ≤ n ≤ U, i < n,M ′ = write M i i, i′ = i+ 1 ⊢ 0 ≤ i′ ≤ n ≤ U

Fortunately, this is valid (even with the useless assumption about M ′). Because our
postcondition is just ⊤, that is easily seen to be true, but the loop invariant does not
hold initially because

n ≤ U ⊢ 0 ≤ 0 ≤ n ≤ U

is not valid (counterexample: n = −1). So we need to strengthen our precondition
to

0 ≤ n ≤ U

5 Guards

Consider the scenario where you are given the program from the previous section
but no loop invariant. We might be able to guess a loop invariant, but if not we are
stuck. The program looks unsafe, even with the precondition 0 ≤ n ≤ U. If we still
need to run it, what can we do? One option would be dynamic monitoring: we track

LECTURE NOTES SEPTEMBER 12, 2024

Memory Safety L6.5

memory accesses as the program executes and abort it if it attempts to do some-
thing unsafe. Another one is to instrument it with guards before memory accesses.
These guards abort the program if the access would be unsafe and let it go on if
they are safe. Aborting programs is considered safe, because aborting is actually a
well-defined operation that does no harm (except to the running program, but it is
its own fault if it tries to execute an unsafe command). For this purpose we need a
new command test P . In the literature on dynamic logic this is called a guard and
written as ?P . It has the following specification.

ωJtest P Kν iff ω |= P and ν = ω

ωJtest P K iff false

The program test ⊥ will not have a poststate, but it is also safe because it aborts.
As a result, based on the definition of ω |= [α]Q it is the case that

ω |= [test ⊥]Q

for any ω and Q. This in turn means that [test ⊥]Q is logically valid and · ⊢
[test ⊥]Q should be derivable.

Just to be sure, let’s recall the definition of ω |= [α]Q from Lecture 5, page L5.4.

ω |= [α]Q iff for every ν with ωJαKν we have ν |= Q
and not ωJαK

This is a partial correctness statement: if there is no poststate ν such that ωJωKν, then
the first part of the condition is vacuously true.

What does this mean for the axiom for [test P]Q? If P is true, then Q should
also be true. But if the test succeeds then we know P , so we conjecture (somewhat
rashly, perhaps)

[test P]Q ↔ (P →Q)

What if P is false? Then the program test P has no poststate, and yet it is safe.
Consequently [test P]Q should be true, and by this axiom it will be becase ⊥→Q
is valid.

Let’s prove that this axiom is valid, just as in Theorem 1 of Lecture 5 we proved
that [assert P]Q ↔ (P ∧Q).

Theorem 1 The axiom
[test P]Q ↔ (P →Q)

is valid.

Proof: From right to left we set up for an arbitrary ω

ω |= P →Q (assumption)
. . .
ω |= [test P]Q (to show)

LECTURE NOTES SEPTEMBER 12, 2024

https://15316-cmu.github.io/2024//lectures/05-safety.pdf
https://15316-cmu.github.io/2024//lectures/05-safety.pdf

Memory Safety L6.6

The conclusion holds if for every ν such that ωJtest P Kν we have ν |= Q (and not

ω |= Jtest P K , which is true).
So we assume ωJtest P Kν and have to show that ν |= Q. By definition, this

second assumption give us ω |= P and ν = ω.
By the first assumption also ω |= Q and since ν = ω we have ν |= Q

For the left to right direction, we set up for an arbitrary ω

ω |= [test P]Q (assumption)
. . .
ω |= P →Q (to show)

So we assume ω |= P and it remains to show that ω |= Q. Since ω |= P , the first
assumption gives us ν |= Q for any ν with ωJtest P Kν. We can use this for ν = ω
(since ω |= P) to obtain ω |= Q. □

We can easily turn the two directions of the axiom into right and left rules of
the sequent calculus.

Γ, P ⊢ Q,∆

Γ ⊢ [test P]Q,∆
[test]R

Γ ⊢ P,∆ Γ, Q ⊢ ∆

Γ, [test P]Q ⊢ ∆
[test]L

Here is a little table on the differences between assert P and test P .

Poststate ωJassert P Kν ωJtest P Kν
iff ω |= P and ν = ω iff ω |= P and ν = ω

Safety ωJassert P K ωJtest P K
iff ω ̸|= P never

Axiom [assert P]Q ↔ P ∧Q [test P]Q ↔ (P →Q)

6 Sandboxing

Sandboxing unsafe behavior (including memory access through the read or write
commands) proceeds as follows. We replace

• every memory read x := M [e] with the program test 0 ≤ e < U ; x := M [e]

• every memory write M [e1] := e2 with the program test 0 ≤ e1 < U ;
M [e1] := e2

• every division x := divides e1 e2 with the program test e2 ̸= 0 ; x :=
divides e1 e2.

LECTURE NOTES SEPTEMBER 12, 2024

Memory Safety L6.7

• every assertion assert P with the program test P

Now we can safely execute the program. Equally importantly, perhaps, we can
prove the safety of the program transformed in this manner.

Theorem 2 (Safety of Sandboxed Programs) Given a program α under precondition
P , we obtain the sandboxed α′ as defined in the preceding paragraph.

Then · ⊢ P → [α′]⊤.

Proof: We prove safety using the loop invariant ⊤ for every loop. Since any poten-
tially unsafe command is immediately preceded by a guard, the safety condition
incorporated into the rule will be provable since it is exactly the assumption en-
abled by the postcondition of the guard.

More formally, this proof would be carried out by an induction over the structure
of formulas and programs. □

There are two optimizations that come to mind. We can introduce fresh tempo-
raries in order to avoid recomputing the value of expressions. For example, instead
of test 0 ≤ e < U ; x := M [e] we would insert t := e ; test 0 ≤ t < U ; x := M [t]
for a fresh temporary variable t.

The other optimization is a bit trickier. At first one might think that if we can
prove P when we encounter test P during the verification of safety we can replace
it by skip (or assert ⊤, which should be equivalent). However, in conditionals the
postcondition is replicated:

[if P then α else β]Q ↔ (P → [α]Q) ∧ (¬P → [β]Q)

When the postcondition contains a program (which arises from sequential compo-
sition, for example), this program may be proved twice, once in each branch. A
similar remark applies if we unfold loops because the program α is replicated.

So we can only replace test P with skip only if for all occurrences of [test P]Q
in a safety proof we can prove P .

Returning to our earlier example, we can sandbox

n ≤ U→ [i := 0 ; while (i < n){M [i] := i ; i := i+ 1 }]⊤

as

n ≤ U→ [i := 0 ; while (i < n){ test0 ≤ i < U ; M [i] := i ; i := i+ 1 }]⊤

Without a loop invariant and stronger precondition we can’t eliminate the guard.
With the additional information from Section 4 it would be redundant and can be
dropped.

LECTURE NOTES SEPTEMBER 12, 2024

Memory Safety L6.8

7 Summary

Since it has been a while, we summarize the language so far. We restrict pro-
grams from containing certain expressions with indeterminate behavior to retain
the property that for every given prestate ω, every program has three possible out-
comes: a poststate ν, or no poststate in which case it may be safe or unsafe ().

Variables x, y, z
Memory M

Constants c ::= . . . ,−1, 0, 1, . . .

Expressions e ::= c | x | e1 + e2 | e1 ∗ e2 | e1 − e2 determinate
| e1/e2 | read M e | write M e1 e2 may be indeterminate

Programs α, β ::= x := e | α ; β | skip
| if P then α else β | while P α
| test P safe
| assert P | x := divide e1 e2 may be unsafe
| x := M [e] | M [e1] := e2 may be unsafe

Formulas P,Q ::= e1 ≤ e2 | e1 = e2 | ⊤ | ⊥
| P ∧Q | P ∨Q | P →Q | P ↔ Q | ¬P
| ∀x. P (x) | ∃. P (x)
| [α]Q | ⟨α⟩Q

References

John McCarthy. Towards a mathematical science of computation. In 2nd IFIP
Congress on Information Processing, pages 21–28, Munich, Germany, August 1962.
North-Holland.

Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision
procedure for an extensional theory of arrays. In Symposium on Logic in Com-
puter Science (LICS 2001), pages 29–37, Boston, Massachusetts, June 2001. IEEE
Computer Society.

LECTURE NOTES SEPTEMBER 12, 2024

Lecture Notes on

Generating Verification Conditions

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 7
September 17, 2024

1 Introduction

Dynamic logic is very general. Among other things, it allows us to prove program
equivalence, which you explored in Assignment 2 (Task 5) and Assignment 3 (Task
1). Here is another instance. Just using the axiom

[α ; β]Q ↔ [α]([β]Q)

we can formally prove that sequential composition is associative.

[α ; (β ; γ)]Q
↔ [α]([β ; γ])Q
↔ [α]([β]([γ]Q))
↔ [α ; β]([γ]Q)
↔ [(α ; β) ; γ]Q

When we are proving safety (or even correctness) we’d like to take advantage of the
special form of pre- and post-conditions that are formulated purely in the theory
of arithmetic (or maybe the theory of arrays if we model memory), namely

P → [α]Q

where P is the precondition, α is the program we are trying to verify, and Q is the
postcondition. This is often written as {P}α {Q} and called a Hoare triple.

For this and the next lecture, we make the following assumptions:

1. The precondition P and postcondition Q are formulas of pure arithmetic.
While they may contain expressions, they may not contain programs.

2. All formulas occurring in the program α (in conditionals, loop guards, asser-
tions, and tests) are formulas of pure arithmetic.

LECTURE NOTES SEPTEMBER 17, 2024

https://15316-cmu.github.io/2024//homework/hww-dl.pdf
https://15316-cmu.github.io/2024//homeworks/hw3-safety.pdf

Generating Verification Conditions L7.2

The formulas of pure arithmetic are a subset of all formulas defined by

Pure formulas P,Q ::= e1 ≤ e2 | e1 = e2 | P ∧Q | P ∨Q | P →Q | ¬P | ⊤ | ⊥

We probably should use a new notation for such formulas, but since in today’s
lecture we consider only pure ones (except when recalling axioms), maybe we can
track this in our heads.

As we proceed, we should also consider the status of quantifiers. On the one
hand we sometimes need to refer to them in pre- and post-conditions (especially
when reasoning about arrays). On the other hand, they make the theorem prov-
ing problem much harder. Plus, they shouldn’t appear in program formulas like
conditionals or loop guards because then rather than computing a Boolean value,
we’d have to crank up a theorem prover while the program is running (potentially
have to solve a problem in some undecidable class).

2 Weakest Liberal Precondition

If we are given a program α and a postcondition Q, then a sufficient precondition is a
pure formula P such that P→[α]Q. For example, P = ⊥ is a sufficient precondition
for any α and Q since ⊥ → [α]Q is valid. We would like the weakest such precon-
dition which means that it is implied by any other precondition. We call this the
weakest liberal precondition if we consider partial correctness, which is exactly what
[α]Q captures. As has become common practice we may drop the adjective liberal
since we essentially never consider total correctness (that is, require termination to
be proved).

In order to explain the term “weakest”: we say P is stronger than Q if P implies
Q. Then P = ⊥ is the strongest formula (it implies everything), while P = ⊤ is the
weakest: it only implies Q if Q is already true without the help of P .

Writing wlp α Q for the weakest liberal precondition we want the following two
properties:

1. wlp α Q→ [α]Q (it is a precondition)

2. If P → [α]Q then P → wlp α Q (it the weakest among them).

It is easy to check that wlp α Q ↔ [α]Q because [α]Q satisfies both conditions.
Sadly, we cannot just define wlp α Q = [α]Q because the right-hand side is not
pure, and we therefore cannot just hand it off to a theorem prover for arithmetic.

When thinking about the desired property it quickly becomes clear that loops
are a major obstacle to computing the weakest liberal precondition algorithmically.
So we require the programmer to supply a loop invariant J for every loop and then
construct a weakest liberal precondition with respect to the given loop invariants. We’ll
come back to this point in Section 4. For all the other constructs, we can derive an
algorithm for computing it from the axioms.

LECTURE NOTES SEPTEMBER 17, 2024

Generating Verification Conditions L7.3

When given a problem P → [α]Q, then we call P → wlp α Q the verification con-
dition. If it can be shown valid by an arithmetic prover, then the original dynamic
logic formula P → [α]Q is valid.

3 Programs Without Loops

The function wlp α Q is defined by induction over α. That is, we can make recursive
calls to wlp, but only on constituents programs for α. The result, P , should be a pure
formula as defined before (and, in particular, it should not contain any programs).

We go through the program constructs one by one, reminding ourselves of the
axioms and then deriving from that a case in the definition of wlp. The key here is
wlp α Q ↔ [α]Q.

Sequential Composition. Recall from earlier in this lecture

[α ; β]Q ↔ [α]([β]Q)

Blindly using equivalences:

wlp (α ; β) Q = wlp α (wlp β Q)

This actually works! wlp β Q will be the weakest liberal precondition of Q with
respect to β, and we can use this as the postcondition for the next recursive call on
α because it must be pure.

An interesting aspect of this clause is that we proceed through the program
from right to left: when computing the weakest precondition of α ; β we first
compute it for β and then for α. This is characteristic of this approach. Going in the
other direction is also possible, but it either leads us to the strongest postcondition
(which we will not discuss) or the closely related symbolic evaluation (which is the
subject of Lecture 8.

Assignment. For assignment, we will take particular advantage of the purity of
the postcondition. First, let’s recall the axiom:

[x := e]Q(x) ↔ ∀x′. x′ = e→Q(x′) (x′ fresh)

where x′ is chosen so it does not already occur in e or Q(x). We need this side
condition for two reasons. (1) if we have some previous knowledge about x (like:
x = 2) then after an assignment (like: x := 3) we would reach inconsistent as-
sumptions because they the two values of x would be in conflict. (2) We cannot just
substitute e for x in Q(x) because Q(x) might contain programs. For example, in
[x := 5]([while x > 0 x := x− 1]) the variable x in the program successively refers
to 5, 4, 3, 2, 1, 0, so substituting in the initial value 5 ist just plain incorrect.

LECTURE NOTES SEPTEMBER 17, 2024

https://15316-cmu.github.io/2024//lectures/08-symeval.pdf

Generating Verification Conditions L7.4

Fortunately, when calculating the weakest precondition we know that Q(x) is
a formula of pure arithmetic. Significantly, it does not contain any programs. Be-
cause of that, substituting e for x is actually not problematic. We write this as Q(e).
So we define

wlp (x := e) Q(x) = Q(e)

Let’s run through an example to see the two clauses in the definition of wlp in
action. The program z := x ; x := y ; y := z swaps the contents of variables x and
y using the auxiliary variable z. Let’s say the postcondition is x = b ∧ y = a. We
expect the weakest precondition to imply that before the execution of the program,
x = a ∧ y = b must be true.

wlp (z := x ; x := y ; y := z) (x = a ∧ y = b)
= wlp (z := x) (wlp (x := y ; y := z) (x = a ∧ y = b))
= wlp (z := x) (wlp (x := y) (wlp (y := z) (x = a ∧ y = b)))

At this point in rightmost call will use the rule for assignment, substituting z for y
in the postcondition. The new constructed postcondition then feeds into the prior
call to wlp, and so on.

= wlp (z := x) (wlp (x := y) (x = a ∧ z = b))
= wlp (z := x) (y = a ∧ z = b)
= y = a ∧ x = b

In this case, we get essentially exactly the precondition we expected. It does not
mention z, since z is written to in the first assignment so its value prior to execution
is irrelevant.

Conditionals. Recall the axiom

[if P then α else β]Q ↔ (P → [α]Q) ∧ (¬P → [β]Q)

Again, we can use this straightforwardly, making two recursive calls on subpro-
grams.

wlp (if P then α else β) Q = (P → wlp α Q) ∧ (¬P → wlp β Q)

The postcondition does not change in both calls and is therefore pure, while P is
a program condition and therefore pure by our general assumption (2) from this
lecture. Therefore, the result of wlp is pure.

Assertions and Tests. Again, the axioms:

[assert P]Q ↔ (P ∧Q)
[test P]Q ↔ (P →Q)

LECTURE NOTES SEPTEMBER 17, 2024

Generating Verification Conditions L7.5

So:
wlp (assert P) Q = P ∧Q

wlp (test P) Q = P →Q

As in the case of conditionals, these results are pure because P is a program condi-
tion.

This leads us to the case of loops.

4 Loops

First, let’s recall the right rule for [while]R. Roughly, it states that the loop invariant
J must hold initially, that it must be preserved by one trip around the loop, and that
it must imply the postcondition.

Γ ⊢ J,∆ J, P ⊢ [α]J J,¬P ⊢ Q

Γ ⊢ [while P α]Q,∆
[while]R

In applying this rule we have to choose the right loop invariant J . Since this a very
difficult problem (both in theory and in practice), we will assume for the remain-
der of this lecture and part of the next lecture that the programmer has supplied
it—maybe they were lucky enough to have taken 15-122 Principles of Imperative
Computation! Our notation here is just whileJ P α where J is the loop invariant.

Another particularly tricky aspect of this rule is that neither Γ nor ∆ are allowed
to be used in the second and third premise. That’s because Γ and ∆ hold formulas
that reference variables in their state as we enter the loop. However, the loop invariant
must be preserved no matter how many times we go around the loop, so we cannot
rely on any assumptions that holds as enter it. That’s the same reason we cannot
substitute an expression for a variable that appears in the loop.

So what to do? It turns out that we need a new logical connective to model this
as a formula. We write □P (pronounced “white box P”) which is true exactly if P is
valid (which means: true in every state, as we have defined when proving validity
of our axioms). The right rule for □P then wipes out any knowledge we might
have about the current state.

· ⊢ P

Γ ⊢ □P,∆
□R

Semantically, it is also easy to define

ω |= □P iff ν |= P for all states ν

It is a useful exercise to show the soundness of the □R rule given this definition.
Unfortunately, it is not invertible. For example, we have ⊥ ⊢ □(⊥), but we cannot
prove the premise of the rule · ⊢ ⊥.

We won’t discuss the left rule or axioms for □P , because we don’t need them
in the context of this course. The particular modal logic we need here is called S4,

LECTURE NOTES SEPTEMBER 17, 2024

Generating Verification Conditions L7.6

and if you are curious you can read more about it in the Stanford Encyclopedia of
Philosophy [Garson, 2000].

With this in hand, we can turn the [while]R rule into an axiom.

[whileJ P α]Q ↔ J (true initially)
∧ □(J ∧ P → [α]J) (preserved)
∧ □(J ∧ ¬P →Q) (implies postcondition)

We have packaged up the allowed antecedents (like J and P) together with the succe-
dent and then stashed under a white box in order to “erase” any other antecedents
or succedents we might have.

We have written this as a bi-implication. If the loop invariant J were not speci-
fied in the syntax of the program, it would only be a right-to-left implication. Keep-
ing this in mind, we can now turn this axiom into a definition of the weakest pre-
condition.

wlp (whileJ P α) Q = J (true initially)
∧ □(J ∧ P → wlp α J) (preserved)
∧ □(J ∧ ¬P →Q) (implies postcondition)

We should check a few things. First, are all postconditions in calls to wlp pure?
There is only one recursive call, and its postcondition J must be pure because J

appears in the program and was therefore assumed to be pure. Also, the formula
returned by wlp is pure if we allow □P as a pure formula. This seems reasonable since
it does not contain any program. So we revise:

Pure formulas P,Q ::= e1 ≤ e2 | e1 = e2 | P ∧Q | P ∨Q | P →Q | ¬P | ⊤ | ⊥
| □P

The theorem provers we use don’t understand the white box modality, so we have
to take care to turn these pure formulas into their language. We comment on that
in Section 6.

We can also see that if the loop invariant is not preserved or does not imply
the postcondition, the weakest liberal precondition is equivalent to falsehood (⊥)
because the white boxed formula is always either true or false.

5 A Loop Example

Let’s reconsider an example from Lecture 4 and Lecture 5.

[whilex≥0 (x > 1) x := x− 2] (0 ≤ x ≤ 1)

We have already written in the loop invariant we discovered the first time. Our
precondition was x ≥ 6, but we purposely omit it here to see what the the weakest

LECTURE NOTES SEPTEMBER 17, 2024

https://15316-cmu.github.io/2024//lextures/04-semantics.pdf
https://15316-cmu.github.io/2024//lextures/05-safety.pdf

Generating Verification Conditions L7.7

liberal precondition might be. We expect that whatever it is should be implied by
x ≥ 6.

So we start to calculate (with J = (x ≥ 0)).

wlp (whilex≥0 (x > 1) x := x− 2) (0 ≤ x ≤ 1)
= x ≥ 0
∧□ (x ≥ 0 ∧ x > 1→ wlp (x := x− 2) (x ≥ 0))
∧□ (x ≥ 0 ∧ ¬ (x > 1)→ 0 ≤ x ≤ 1)

There is one recursive call to wlp, which we can work out by substitution (since it
is an assignment):

wlp (x := x− 2) (x ≥ 0) = (x− 2 ≥ 0)

Plugging this back in we get

wlp (whilex≥0 (x > 1) x := x− 2) (0 ≤ x ≤ 1)
= x ≥ 0

∧□ (x ≥ 0 ∧ x > 1→ x− 2 ≥ 0)
∧□ (x ≥ 0 ∧ ¬ (x > 1)→ 0 ≤ x ≤ 1)

Since we can verify the two boxed formulas as being valid, the weakest liberal
precondition is equivalent to x ≥ 0. As expected, this is implied by x ≥ 6.

6 White Box1

First a note on substitution. When we write Q(x) where Q may contain formulas
□P , then occurrence of x in P are allowed, but excluded from substitution. That’s
because P has to be valid, which means true in every state. Therefore any occur-
rence of x in P does not refer to the same x as outside the white box. For example,
if

Q(x) = (x > 1 ∧□(x < 0→−x > 0))

then
Q(5) = (5 > 1 ∧□(x < 0→−x > 0))

We might say that “substitution is blocked by white boxes”. This is related to the
fact that substitution into [α]P may be prohibited, in particular if α contains loops
or assignments.

Can we translate a formula with white boxes into arithmetic without boxes?
This is what we need in order to pass it to a theorem prover for arithmetic. It turns
out to be quite easy: we “pull out” all white boxed formulas to the top level and
replace them by ⊤ or ⊥, depending on whether they can be verified or not.

1not covered in lecture, but important for the first lab

LECTURE NOTES SEPTEMBER 17, 2024

Generating Verification Conditions L7.8

In the example from the previous section (not with the precondition), we’d like
to verify

x ≥ 6→ [whilex≥0 (x > 1) x := x− 2] (0 ≤ x ≤ 1)

We calculate the weakest liberal precondition,

wlp (whilex≥0 (x > 1) x := x− 2) (0 ≤ x ≤ 1)
= x ≥ 0

∧□ (x ≥ 0 ∧ x > 1→ x− 2 ≥ 0)
∧□ (x ≥ 0 ∧ ¬ (x > 1)→ 0 ≤ x ≤ 1)

form the implication from the precondition, and pull out the white boxed formulas.
We thus have to ask our theorem prover if all of the following are valid and plug
in the results:

p1 = valid (x ≥ 0 ∧ x > 1→ x− 2 ≥ 0)
p2 = valid (x ≥ 0 ∧ ¬ (x > 1)→ 0 ≤ x ≤ 1)
valid (x ≥ 6→ x ≥ 0 ∧ p1 ∧ p2)

If we determine the validity of p1 and p1 first (which will be true or false), we can
then replace p1 and p2 with ⊤ or ⊥ in the third line.

Fortunately, in this example, all of these are quite easy and valid. Note that we
cannot just signal an error if p1 or p2 are invalid. For example, in

wlp (if ⊤ then x := x+ 1 else (whilex=0 (x ≥ 0) x := x− 1)) (x = 5)

the loop invariant x = 0 is not preserved, but, logically, the weakest liberal precon-
dition should be x = 4 since the implication ¬⊤→ wlp (while . . .) (x = 5) is valid,
even if wlp (while . . .) (x = 5) = ⊥.

Alternatively we could stipulate that loop invariants must be loop invariants
wherever they occur and just abort with an error when given a program such as
the one above.

7 Summary

We summarize the definition of wlp α Q.

wlp (α ; β) Q = wlp α (wlp β Q)
wlp (x := e) Q(x) = Q(e)
wlp (if P then α else β) Q = (P → wlp α Q) ∧ (¬P → wlp β Q)
wlp (assert P) Q = P ∧Q

wlp (test P) Q = P →Q

wlp (whileJ P α) Q = J

∧□(J ∧ P → wlp α J)
∧□(J ∧ ¬P →Q)

LECTURE NOTES SEPTEMBER 17, 2024

Generating Verification Conditions L7.9

References

James Garson. Modal logic. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy. Spring 2024 edition edi-
tion, 2000. URL https://plato.stanford.edu/archives/spr2024/

entries/logic-modal/.

LECTURE NOTES SEPTEMBER 17, 2024

https://plato.stanford.edu/archives/spr2024/entries/logic-modal/
https://plato.stanford.edu/archives/spr2024/entries/logic-modal/

Lecture Notes on

Symbolic Evaluation

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 8
September 19, 2024

1 Introduction

In the last lecture we introduced the weakest liberal precondition which can be cal-
culated algorithmically from a program as long as loop invariants are provided by
the programmer. We can then prove P → [α]Q by delegating P → wlp α Q to a
theorem prover for arithmetic, as long as P , Q, and any formulas in α are formulas
of pure arithmetic. The algorithm was based on the axioms for dynamic logic we
developed and proved semantically sound. Variations of this algorithm are used
by systems for program verification such as Why3 or Dafny. In this course we
are mostly interested in verifying safety, which benefits from the same techniques.
Furthermore, functional verification and safety are often inseparably intertwined.

There is a counterpart to the weakest precondition, namely the strongest postcon-
dition. This can also be represented in dynamic logic [Streett, 1982, Platzer, 2004];
you can find a summary in Lecture 11 of 15-414 Bug Catching: Automated Program
Verification. Here, we approach it slightly differently, instead devising an algorithm
for proving safety by traversing the program in the order of evaluation. This is just
the opposite of the weakest precondition which proceeds through the program in
reverse order. This time, instead of using the axioms, we take our inspiration from
the rules of the sequent calculus. This results in symbolic evaluation, and actual pro-
gram execution can be seen as a special case. It is often packaged in the form of
bounded model checking [Biere et al., 2003] and available in tools such as CMBC.

As we will see, there are advantages and disadvantages to both approaches,
which is why both have applications in industry.

LECTURE NOTES SEPTEMBER 19, 2024

https://www.why3.org/
https://dafny.org/
https://www.cs.cmu.edu/~15414/s22/lectures/11-post.pdf
https://www.cprover.org/cbmc/

Symbolic Evaluation L8.2

2 Analysis in Evaluation Order

At the outset, we make the same restriction as in the last lecture: in P → [α]Q, both
P and Q are pure, and all formulas occurring in α are also pure. Unfortunately,
if we want to analyze the program in the order it is evaluated, this is not quite
sufficient. Consider (for now) the axiom for sequential composition of programs:

[α ; β]Q ↔ [α]([β]Q)

Even if we start with a pure postcondition Q, on the right-hand side where we fo-
cus on α, the postcondition is suddenly [β]Q. When you think about it, this makes
sense: if we execute a command in a program, we somehow have to remember
what else needs to be done. It turns out that the programs that remain to be ex-
ecuted form a stack. We write S for such formulas and conjecture that they are
sufficient to specify symbolic evaluation. (Turns out we are right.)

Stacks S ::= Q | [α]S

Revisiting the axiom using stacks:

[α ; β]S ↔ [α]([β]S)

This is now well-formed, because if S is a stack on the left-hand side, the [β]S is a
stack on the right-hand side. We’ll have to keep an eye on it, though.

Next, we consider a specification P → [α]S in the sequent calculus. We start the
derivation:

P ⊢ [α]S

· ⊢ P → [α]S
→R

It looks like the succedent consists of a single formula [α]S, while the antecedent is
also a single (pure) formula P . In order to handle conditionals, we need to gener-
alize the antecedent. Consider

P, P ′ ⊢ [α]S P,¬P ′ ⊢ [β]S

P ⊢ [if P ′
then α else β]S

[if]R

We see that we accumulate information in the antecedents, so we generalize from
a single formula to a collection Γ consisting entirely of pure formulas.

In summary, we will try to define procedure for proving sequents of the form

Γ
︸︷︷︸

all pure

⊢ S
︸︷︷︸

stack

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.3

3 Inference Rules Defining Algorithms

We already saw one instance where a collection of inference rules described an
algorithm: the sequent rules for propositional calculus in Lecture 2. The algorithm
was as follows:

1. Starting from the sequent we are trying to prove, we arbitrarily use rules
bottom-up. Since all rules are invertible (we preserve validity) and reductive
(we make progress), this is a sound and complete strategy.

2. When we arrive at sequents with only propositional variables we have two
cases:

(a) If antecedents and succedents share a variable p, we use the identity rule
and this subgoal has been proved successfully.

(b) If they are disjoint, we can construct a countermodel (contradicting va-
lidity) by making all antecedents true and all succedents false.

We now want to use a similar strategy to construct a derivation of Γ ⊢ S, under
the restrictions motivated in the previous section. It will look roughly as follows.

1. If S is a pure formula Q, we call an oracle to prove the purely arithmetic
sequent.

2. Otherwise, S = [α]S′ for some S′. We use the appropriate rule for decompos-
ing the program α. Each premise becomes a subgoal.

The rules for [α]S′ are reductive in the sense that they only contain constituent pro-
grams of α in their premises. Therefore the procedure will terminate if each appli-
cation of the arithmetic oracle terminates.

For completeness we also need invertibility. As usual, this holds except for
loops. However, if we require the programmer to specify loop invariants then a
form of completeness does hold. We then say that the algorithm is complete relative
to an oracle for arithmetic.

Because the form of sequents are restricted compared to the general case of
dynamic logic, we introduce a new notation:

Γ ⊩ S

We will ascertain the property that Γ ⊩ S if and only if Γ ⊢ S, which guarantees
the soundness and (relative) completeness of our algorithm.

LECTURE NOTES SEPTEMBER 19, 2024

https://15316-cmu.github.io/2024//lectures/02-prop.pdf

Symbolic Evaluation L8.4

4 Rules for Symbolic Evaluation

The first is a general (and straightforward) rule: when the succedent is pure, we
call the oracle. We express this as a sequent consisting entirely of pure formulas.

Γ ⊢ Q Q pure

Γ ⊩ Q
arith

Like several other rules, the rule for composition is just a restriction of the rule of
the ordinary sequent calculus.

Γ ⊩ [α]([β]S)

Γ ⊩ [α ; β]S
[;]R

Similarly, assignment remains the same.

Γ, x′ = e ⊩ S(x′) x′ fresh

Γ ⊩ [x := e]S(x)
[:=]Rx

′

Unlike the situation for the calculation of weakest preconditions, the stack S(x)
may contain programs. We therefore can only substitute S(e) in some special
cases—generally, we need to make a new assumption and generate a fresh instance
of x.

Even for conditionals, not much changes.

Γ, P ⊩ [α]S Γ,¬P ⊩ [β]S

Γ ⊩ [if P then α else β]S
[if]R

We can notice something interesting here: we accumulate more information in the
antecedents as we proceed with the (symbolic) evaluation. This is not the case
when calculating the weakest precondition (or at least not in a straightforward
manner).

Let’s consider an example with conditionals:

α1 = (if x ≥ 0 then y := x else y := −x)
α2 = (if x ≥ 0 then z := −x else z := x)
α = (α1 ; α2)

We claim that after this program terminates we have y + z = 0.
Let’s see how this works out with symbolic evaluation.

(1)

x ≥ 0, y′ = x ⊩ [α2] (y
′ + z = 0)

x ≥ 0 ⊩ [y := x]([α2] (y + z = 0))
[:=]R (2)

¬(x ≥ 0) ⊩ [y := −x]([α2] (y + z = 0))

· ⊩ [α1]([α2] (y + z = 0))
[if]R

· ⊩ [α1 ; α2] (y + z = 0)
[;]R

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.5

Proceeding to (1), we have to apply the rule for conditionals again.

✓

x ≥ 0, y′ = x, x ≥ 0, z′ = −x ⊢ y′ + z′ = 0

x ≥ 0, y′ = x, x ≥ 0, z′ = −x ⊩ y′ + z′ = 0
arith

x ≥ 0, y′ = x, x ≥ 0 ⊩ [z := −x] (y′ + z = 0)
[:=]R

?
x ≥ 0, y′ = x,¬(x ≥ 0), z′ = x ⊩ y′ + z′ = 0

x ≥ 0, y′ = x,¬(x ≥ 0) ⊩ [z := x] (y′ + z = 0)
[:=]R

x ≥ 0, y′ = x ⊩ [α2] (y
′ + z = 0)

[if]R

In the first branch, everything goes according to play. But in the second branch,
we can read off something like y′ + z′ = 2x but this is not equal to 0! Fortunately,
we can still prove the sequent because the assumptions x ≥ 0 and ¬(x ≥ 0) are
contradictory.

In fact, we could have stopped just before, when the succedent still contained
a program because the antecedents are already contradictory! The following rule
allows us to do this in general: we can stop our proof construction as soon as the
antecedents become inconsistent.

Γ ⊢ ⊥

Γ ⊩ S
infeasible

Since the premise is a pure arithmetic sequent, we directly appeal to the oracle. The
savings of this rule can be considerable, because the stack S could contain a com-
plex program. We will return to this in Section 6 after completing our remaining
rules.

We skip the subgoal (2) since it can be proved in a symmetric manner.

5 Assertions, Tests and Loops

Assertions and tests are entirely straightforward, since we just repurpose the ordi-
nary sequent rules.

Γ ⊢ P Γ ⊩ S

Γ ⊩ [assert P]S
[assert]R

Γ, P ⊩ S

Γ ⊩ [test P]S
[test]R

Just note that our assumptions about purity and the stack structure of the succe-
dents are satisfied. Also, the first premise immediately appeals to the oracle since
P must be pure.

For loops with invariants, again we mimic the ordinary sequent rule.

Γ ⊢ J J, P ⊩ [α]J J,¬P ⊩ S

Γ ⊩ [whileJ P α]S
[while]R

The first premise is pure, but the other two are not by contain stack formulas, so
we remain within the algorithmic rules (⊩).

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.6

An interesting point here is the symbolic evaluation in the presence of loop
invariants is actually not a special case of evaluation: we analyze the loop body
only once, rather than possibly many times as we do when a program is executed.
This, and the fact that we often won’t have loop invariants, leads to the idea of
bounded symbolic evaluation or bounded model checking.

6 Control Flow Graphs

A pictorial representation of imperative programs, in particular for thinking about
program analysis, are control flow graphs. Since they are also suitable for low level
programs (for example, in assembly language), they are particularly common in
compiler design.

For our purposes, we use an especially simple form. Small circles denote points
in the program, and arrows indicate possible transitions from one point in the pro-
gram to the next. On the side of the arrow we indicate the information gained for
symbolic evaluation along this particular transition. For example, for a conditional
if P then α else β we would draw

α β

P ¬P

A precondition P is drawn as a label on the incoming edge to the root. Starting
our example,

α1 = (if x ≥ 0 then y := x else y := −x)
α2 = (if x ≥ 0 then z := −x else z := x)
α = (α1 ; α2)

The precondition is ⊤ and then we have a conditional with two branches. They
come back together before α2.

⊤

x ≥ 0 ¬(x ≥ 0)

α2

y := x y := −x

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.7

For an assignment, we just label the arrow with the assignment, although the “in-
formation gained” will be an equality on a renamed variable. The program α2 is
represented by a similar graph, starting at the bottom node.

⊤

x ≥ 0 ¬(x ≥ 0)

y := x y := −x

x ≥ 0 ¬(x ≥ 0)

z := −x z := x

assert (y + z = 0)

A path through this program just follows the arrows from the root down to the final
node. A priori, each path represents a potential execution of the program. It is easy
to see that the number of paths through a control flow graph could be exponential
in its size.

Viewed in terms of the sequent calculus, each path represents a branch in the
proof tree, looking upwards. A path formula is the conjunction of the information
gained along a path (which includes some renaming for variable assignments). The
output assert represents the postcondition in the succedent of the sequent. For
example, going left both times gives us the sequent

x ≥ 0, y′ = x, x ≥ 0, z′ = −x ⊢ y′ + z′ = 0

If we first go left and then right we can stop even before the assignment because
the path reads

x ≥ 0, y′ = x,¬(x ≥ 0) ⊢ . . .

which is infeasible. In this example, there are only two feasible paths, and the post-
condition holds for both of them.

7 Bounded Symbolic Evaluation

When there are no loop invariants (or maybe they aren’t sufficient for our pur-
poses), symbolic evaluation offers another option. We can unroll each loop to a

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.8

certain specified depth. The depth is necessary in many cases in order to avoid
nontermination of the algorithm. Recall the axiom

[while P α]Q ↔ (P → [α]([while P α]Q)) ∧ (¬P →Q)

and the corresponding rule:

Γ, P ⊢ [α]([while P α]Q),∆ Γ,¬P ⊢ Q,∆

Γ ⊢ [while P α]Q,∆
unfold

In this rule we don’t lose Γ and ∆ because we go around the loop exactly 1 or 0
times. The unfold rule is not reductive. In order to represent bounded evaluation
we annotate the while with n, a constant natural number not accessible to the pro-
grammer. Instead, it would usually be a parameter to an invocation of a bounded
model checker. Then we have two rules: one when we are still allowed to unroll
the loop, and one when we have reached the bound.

Γ, P ⊩ [α]([while
n P α]S) Γ,¬P ⊩ S

Γ ⊩ [while
n+1 P α]S

unfoldn+1
Γ ⊩ S

Γ ⊩ [while
0 P α]S

unfold0

The rules are now reductive in the sense that the pair (α, n) decreases: either n

becomes smaller and the program remains the same, or n has reached 0 and then
the program becomes smaller. This is called a lexicographic ordering because two
pairs are compared first in their first component and then in their second if the first
are equal. This is like the ordering of words in a dictionary.

These rules have several problems. A critical one is that we may not be guaran-
teed that the loop without the depth annotation actually satisfies the postcondition.
If we can prove all subgoals we know at least that there isn’t an obvious problem
that would arise by limited execution. And if there is a bug, we might still find it
by generating a subgoal that is not provable. Therefore we might say that bounded
symbolic evaluation is for bug finding, but generally not for full verification.

In some circumstances, even bounded checking could amount to full verifica-
tion. That’s when the paths around the loop become infeasible before the bound is
reached. Sequent derivations are large and awkward to show, so we use a control
flow graph instead for the (by now familiar) program

0 ≤ x ≤ 3→ [while (x > 1);x := x− 2] (0 ≤ x ≤ 1)

with a new precondition.
Because we have a loop, the control flow graph will now have a back edge,

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.9

pointing up higher in the graph.

0 ≤ x ≤ 3

x > 1 ¬(x > 1)

x := x− 2

assert 0 ≤ x ≤ 1

We enumerate the sequents along the paths, which are marked with R (for chosing
the right alternative, leaving the loop) and L for chosing the left one (proceeding
into the loop).

R : 0 ≤ x ≤ 3,¬(x > 1) ⊢ 0 ≤ x ≤ 1 valid!
LR : 0 ≤ x ≤ 3, x > 1, x′ = x− 2,¬(x′ > 1) ⊢ 0 ≤ x′ ≤ 1 valid!
LL : 0 ≤ x ≤ 3, x > 1, x′ = x− 2, x′ > 1 ⊢ . . . infeasible!

The last path doesn’t go all the way to the end, because the partial path LL is already
contradictory. The path being infeasible means that the sequent is valid using the
rule infeasible. So in this example the precondition was strong enough that we were
able to prove validity with just two iterations of the loop.

8 Summary

We summarize the rules for symbolic evaluation, alternatively with loop invariants
or bounds on loop unrolling, in Figure 1. In order to prove P → [α]Q for pure P

and Q (and α only containing pure conditions), we search bottom-up for a proof of
P ⊩ [α]Q. Also recall the definition of stacks

Stacks S ::= Q | [α]S

By the way, we can recover ordinary execution from symbolic evaluation by pro-
ceeding as in bounded evaluation (unrolling the loop), without regard to any bound.
This only makes sense if our antecedents assign a constant value to each variable
that is used by the program. In that case, each time we might branch due to a
conditional or loop, one side will immediately be infeasible and we proceed deter-
ministically. Of course, evaluation may not terminate.

This is not a particularly clever way to evaluate a program because of the fre-
quent renaming. Essentially, the antecedents keep track of the whole history of
the computation, that is, every value that a variable had on the current (and only)
path. One could improve on that, but there are also more direct ways to obtain
evaluation from the semantic definition of ωJαKν.

LECTURE NOTES SEPTEMBER 19, 2024

Symbolic Evaluation L8.10

Γ ⊢ Q Q pure

Γ ⊩ Q
arith

Γ ⊢ ⊥

Γ ⊩ S
infeasible

Γ ⊩ [α]([β]S)

Γ ⊩ [α ; β]S
[;]R

Γ, x′ = e ⊩ S(x′) x′ fresh

Γ ⊩ [x := e]S(x)
[:=]Rx

′

Γ, P ⊩ [α]S Γ,¬P ⊩ [β]S

Γ ⊩ [if P then α else β]S
[if]R

Γ ⊢ P Γ ⊩ S

Γ ⊩ [assert P]S
[assert]R

Γ, P ⊩ S

Γ ⊩ [test P]S
[test]R

Γ ⊢ J J, P ⊩ [α]J J,¬P ⊩ S

Γ ⊩ [whileJ P α]S
[while]R

Γ, P ⊩ [α]([while
n P α]S) Γ,¬P ⊩ S

Γ ⊩ [while
n+1 P α]S

unfoldn+1
Γ ⊩ S

Γ ⊩ [while
0 P α]S

unfold0

Figure 1: Symbolic Evaluation

References

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Advances in Computers, 58:117–148, 2003.

André Platzer. Using a program verification calculus for constructing specifications
from implementations. Minor Thesis (Studienarbeit), University of Karlsruhe,
Department of Computer Science, February 2004. URL https://lfcps.org/

logic/Minoranthe.html.

Robert S. Streett. Propositional dynamic logic of looping and converse is elemen-
tarily decidable. Information and Control, 54:121–141, 1982.

LECTURE NOTES SEPTEMBER 19, 2024

https://lfcps.org/logic/Minoranthe.html
https://lfcps.org/logic/Minoranthe.html

Lecture Notes on

Program Analysis

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 9
September 24, 2024

1 Introduction

A major theme of this course is how rules of inference and other formal objects like
the axioms of dynamic logic bridge the gap between mathematical definitions and
implementation. One can also think of them as an interface: on one side we can
rigorously prove mathematical properties (like: soundness of the rules) and on the
other side we can translate them into programs and run them. The following table
illustrates this point of view

semantic property formal system algorithm

validity axioms [α]Q ↔ P weakest precondition wlp α Q

soundness rules Γ ⊢ ∆ symbolic evaluation Γ ⊩ [α]S

From a pragmatic perspective, it remains to translate the algorithm into code. We
have already formulated weakest liberal precondition as a function, but at a fairly
high level of abstraction. Concrete decision need to be made and depend to an
extent on the implementation language you choose. Lab 1 will give you the oppor-
tunity to explore that. We recommend a statically type functional language because
the abstractions it provides are most suitable for such implementation tasks.

The specific implementations we ask in Lab 1 are an interpreter and a verifica-
tion condition generator. The first executes programs, while the second calculates
the weakest liberal precondition and passes it to a theorem prover to verify sound-
ness (if possible). We provide you with the most “boring” parts, mainly a parser
from the concrete syntax of a program (a string of characters) into the abstract syntax
(representing the mathematical structure of programs).

We have already talked extensively about the weakest liberal precondition, so
today we transition from symbolic evaluation to actual evaluation of a program.
This will raise an issue we will then address by an additional program analysis
algorithm.

LECTURE NOTES SEPTEMBER 24, 2024

Program Analysis L9.2

2 Evaluation

In Lecture 8 we formalized symbolic evaluation as a collection of rules of inference
for Γ ⊩ [α]S where Γ is a collection of antecedents in pure arithmetic, α is a pro-
gram where all conditions are also in pure arithmetic, and S represents a stack of
programs followed by a postcondition Q in pure arithmetic. These rules can be
read as an algorithm, applying them in a bottom-up fashion.

For evaluation, we have a stronger assumption, namely that every variable has
a value so we can just look it up in the state that maps variable to values. But
then how do we evaluate a program y := x + 1? If this program is all we have,
then there is a problem. Namely: we don’t have an initial value for x! While
it is mathematically convenient to just assume that a state ω is a total map from
variables to integer values, when actually running programs this may not be the
case. For this lecture, therefore, when describing the algorithm for evaluation, we
assume that the state is a partial map from variables to integers. We still use the
same letters, like ω, µ, and ν. This partial map must be defined on all variables
that a program may use, leading to the so-called def/use analysis of programs. We
postpone that to Section 3, first showing evaluation.

We write
eval ω α = ν

where ω is the initial state, α is the program, and ν is the final state if it exists. We
also need to evaluate expressions to return an integer, and conditions to return a
Boolean.

evalZ ω e = c ∈ Z

evalB ω P = b ∈ B

Except for while loops, the rules for evaluation are faithful transcriptions of the
semantic definition of programs as denoting a relation.

We start with expressions. We need to ensure that ω(x) is defined by our
def/use analysis; here we just assume that it is.

evalZ ω c = c

evalZ ω x = ω(x) (must be defined)
evalZ ω (e1 + e2) = evalZ ω e1 + evalZ ω e2

Note that for addition (and other operations we have elided), the “plus” on the
left-hand side is a program construct and the “plus” on the right-hand side is the
mathematical operation of addition on integers.

Boolean conditions (as they appear in if-then-else, loops, assertions, and tests)
are evaluated in a similar manner.

evalB ω (e1 ≤ e2) = evalZ ω e1 ≤ evalZ ω e2
evalB ω (⊤) = ⊤
evalB ω (⊥) = ⊥
evalB ω (P ∧Q) = evalB ω P ∧ evalB ω Q

LECTURE NOTES SEPTEMBER 24, 2024

https://15316-cmu.github.io/2024//lectures/08-symeval.pdf

Program Analysis L9.3

In the case of conjunction, the conjunction on right-hand side implements the truth
table for conjunction. As we have emphasized multiple times, expressions and
Boolean conditions are safe and always terminate. Because of that, the following
definition suggested in lecture is semantically equivalent but more efficient.

evalB ω (P ∧Q) = evalB ω Q provided evalB ω P = ⊤
= ⊥ provided evalB ω P = ⊥

We elide the straightforward remaining cases. On to programs!

Sequential Composition. In order to evaluate α ; β we evaluate β in the state
resulting from the evaluation of α.

eval ω (α ; β) = eval (eval ω α) β

There is the possibility that eval ω α does not have a poststate (e.g., a loop is infinite
or a test fails). In your programming language you will have to account for this
somehow, for example by raising an exception if a test fails, or returning either
some token indicating failure or that poststate and then distingushing the cases.
Since this depends on your programming language and your intended interface to
the implementation, we won’t specify this here.

Assignment. For assignment, we update the state ω.

eval ω (x := e) = ω[x 7→ c] where evalZ ω e = c

Conditionals.

eval ω (if P then α else β) = eval ω α provided evalB ω P = ⊤
= eval ω β provided evalB ω P = ⊥

Tests and Assertions. Assertions in programs are there to prove safety statically,
so we don’t execute them. Test are there to guarantee safety dynamically, so we
perform them and “abort” if necessary.

eval ω (assert P) = ω

eval ω (test P) = ω provided evalB ω P = ⊤
eval ω (test P) has no poststate provided evalB ω P = ⊥

The action of “abort” is not explicitly represented—it depends on your implemen-
tation language and environment.

LECTURE NOTES SEPTEMBER 24, 2024

Program Analysis L9.4

Loops. For loops, the semantic specification and the implementation diverge. In-
stead of “guessing” how many times we go around the loop, but we just proceed
recursively.

eval ω (while P α) = ω provided evalB ω P = ⊥
= eval (eval ω α) (while P α) provided evalB ω P = ⊤

The interpreter may itself not terminate if the loop does not terminate, or the im-
plementation may carry a bound on the number of evaluation steps before giving
up.

3 Def/Use Analysis

Before starting the program, we’d like to make sure that all variables the program
may use are actually defined by the time their value is needed. We could probably
translate this kind of problem into a proposition of dynamic logic and reason about
it logically. But the “defined-before-use” property is fundamental to evaluation, so
we want to check it before we ever attempt to execute program. This check should
not require a theorem prover, but reflect a simple algorithm that is easy for the
programmer to understand.

We define two functions returning finite sets on programs. Since expressions
and formulas use variables but do not define them, we only have use for them.

use α the set of variables used by α

def α the set of variables defined by α

useZ e the set of variables used by e

useB P the set of variables used by P

We don’t give a full definition (leaving this to you in Lab 1), but we show a few
cases.

Expressions and Formulas.

useZ c = { }
useZ x = {x}
useZ (e1 + e2) = useZ e1 ∪ useZ e2

useB (⊤) = { }
useB (P ∧Q) = useB P ∪ useB Q

Assignment. Assignment is the base case for definition.

use (x := e) = useZ e

def (x := e) = {x}

LECTURE NOTES SEPTEMBER 24, 2024

Program Analysis L9.5

Conditionals. Here, we are reminded that “use” has to be interpreted as “may
use” while “def” means “must define”. Keeping this in mind:

use (if P then α else β) = useB P ∪ use α ∪ use β

def (if P then α else β) = def α ∩ def β

Note the intersection in the last clause: a conditional is only guaranteed to define a
variable if both branches define it. This is the case independently of the condition.
So

def (if ⊤ then x := 1 else skip)

does not include x. Therefore, a program such as

(if ⊤ then x := 1 else skip) ; y := x

would be rejected, claiming that x may not be defined before its use.

Sequential Composition and Loops. We’ll leave it to you to work these out. Es-
pecially sequential composition may take a little thought, because that’s where def

and use interact nontrivially.
Note that for Lab 1 we specified that loop invariants are not to be checked (like

asserts).

4 Generating a Verification Condition

Lecture 7 already explains the function to compute the weakest liberal precondition
in some detail. We only review a detail we didn’t elaborate on: how do we perform
substitution? So if we write Q(x), how do we calculate Q(e) for an expression e.

Because for wlp α Q we only substitute into pure formulas Q and not into pro-
grams, it is actually fairly simple. Because even pure formulas contain expressions
we also need to substitute into expressions. So we define

substZ e x e′ = e′′ substitute e for x in e′

substB e x Q = Q′ substitute e for x in Q

We can relate the second one to our prior notation: substB e x Q(x) = Q(e). Here
are some straightforward cases:

substZ e x c = c

substZ e x x = e

substZ e x y = y provided x ̸= y

substZ e x (e1 + e2) = (substZ e x e1) + (substZ e x e2)

LECTURE NOTES SEPTEMBER 24, 2024

https://15316-cmu.github.io/2024//lectures/07-vcgen.pdf

Program Analysis L9.6

In the last case, the “+” on both sides constructs an expression, because unlike eval-
uation, substitution returns a general expression and not necessarily a constant.
The same is true for “≤” and “∧” below that construct formulas.

Except for the last case shown below, substitution into a formula is similarly
straightforward.

substB e x ⊤ = ⊤
substB e x ⊥ = ⊥
substB e x (e1 ≤ e2) = (substZ e x e1) ≤ (substZ e x e2)
substB e x (P ∧Q) = (substZ e x P) ∧ (substZ e x Q)
substB e x (□P) = □P

Why don’t we substitute into a white box? Recall that □P is true if P is valid, that
is, it is true regardless of the state we are in. We needed to introduce it because
variables whose value we know before entering a loop are unknown inside the
loop body and after the loop. So occurrences of x inside □P should be considered
“fresh” variables, implicitly universally quantified.

Whether this turns out to be significant for your implementation depends on
how and when you pass formulas to the theorem prover. We specified in Lab 1
that all loop invariants should be checked (even if they occur in “unreachable”
code). So a correct strategy is not to actually form the conjunction

wlp (whileJ P α) Q = J

∧□(J ∧ P → wlp α J)
∧□(J ∧ ¬P →Q)

on the right hand side, but separately test each white-boxed conjunct for validity
and just return J as the weakest precondition if both pass.

LECTURE NOTES SEPTEMBER 24, 2024

Lecture Notes on

Beyond Safety Properties

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 10
September 26, 2024

1 Introduction

Recall that a trace of a program is the (potentially infinite) sequence of states that
make up its computation. A safety property of a trace is defined as one whose vi-
olation can be determined from a finite prefix. A liveness property is one whose
violation may depend on the whole infinite trace. Operations such as division by
zero or out-of-bounds memory access are examples of safety properties. We can
prove safety in dynamic logic via propositions of the form P → [α]⊤. Examples of
liveness properties would be that a server responds to a query or that a lock ac-
quired in a concurrent computation is eventually released. We can prove liveness
properties in dynamic logic via propositions of the form P → ⟨α⟩Q (pronounced
“diamond alpha Q”). Recall that the formula ⟨α⟩Q is true if there is a way to reach a
final state such that Q is true. This implies that, among other things, loops appear-
ing in the computation must be proved terminating. We have deemphasized the
diamond modality, not investigating its properties.

There are techniques for transforming liveness properties into safety proper-
ties. For example, we can require that a server respond within a certain number of
steps or milliseconds. However, it may still be difficult to enforce such transformed
liveness properties, and it may be even more difficult to take appropriate corrective
action.

Today we will start analyzing an important class of security policies, called
information flow policies, that go beyond both safety and liveness properties in the
sense that we cannot determine if they are violated by analyzing a single program
trace.

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.2

2 Information Flow, Informally

When you log in to your favorite banking site, you would like to be able to see
information about your own account, but you should not be able to see anyone
else’s. In other words, we don’t want information to flow from other accounts to
the program serving you. In our small imperative language we model this using
high security variables and low security variables. Reading from a high security vari-
able and writing the value to a low security variable would be a violation of our
information flow policy. It would be slightly more realistic to consider reading and
writing from memory, but it would be more complex without changing the funda-
mental ideas we study.

As a small running example we consider the following program.

x := 1 ;
y := x+ 5 ;
z := y − 1

We consider x to be a high security variables, while y and z are classified as low
security. We write this information flow policy as

x : H, y : L, z : L

Intuitively, the program above would not satisfy our security policy: we read from
x (high security) and then write x + 5 to y, which is low security. In fact, we can
exactly recover x as y − 5, so we gain perfect information about a secret.

Here is a trace of this program, assuming all variables initially have value 0.

(x = 0, y = 0, z = 0)
⇒ (x = 1, y = 0, z = 0)
⇒ (x = 1, y = 6, z = 0)
⇒ (x = 1, y = 6, z = 5)

Now consider the following alternative program shown on the right.

(x = 0, y = 0, z = 0) x := 1 ; x := 1 ;
(x = 1, y = 0, z = 0) y := x+ 5 ; y := 6 ;
(x = 1, y = 6, z = 0) z := y − 1 z := 5
(x = 1, y = 6, z = 5)

We see that both programs have exactly the same trace, but the first one violates the
policy (information flows from x to y and then to z) while no information flows at
all on the right.

This shows that information flow is not a property of a single trace of a pro-
gram, but requires something more. We’ll see what in the next lecture. Meanwhile,
we’ll try to intuit a program analysis that ensures adherence to an information flow
policy. In the next lecture, we will check if it accomplishes what a semantic defini-
tion of information flow demands.

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.3

3 Tracking Security Levels

We now consider ways analyze programs with the goal of proving that a given
information flow policy is respected by a program. Because we haven’t rigorously
defined what that is, the remainder of this lecture is rather speculative. In the next
lecture we will nail it down precisely.

For now, we imagine a security policy is given by an assignment of security
levels to variables, like H for high and L for low. We use Σ as a map from variables
to security levels. We write x : ℓ if the variable x has security level ℓ. Our system of
inference rules derive

Σ ⊢ α secure

which expresses that, given the security policy Σ, the program α is secure. We
name the inference rules as nameT , where T stands for taint (see Section 6).

Assignment. At the root of the system is that an assignment x := e is a violation
of the security policy if x : L and e : H. The security level of an expression is the
maximal level of the variables occurring in it. That is, we also define Σ ⊢ e : ℓ,
meaning that expression e has security level ℓ.

Variables just have the level prescribed by the policy, and constants are always
of low security.

Σ(x) = ℓ

Σ ⊢ x : ℓ
varT

Σ ⊢ c : L
constT

For a binary operator, we take the maximal security level of the constituents, where
H > L.

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2 ℓ = max(ℓ1, ℓ2)

Σ ⊢ e1 + e2 : ℓ
+T

For an assignment, there are several possible combinations. The first: we can al-
ways write to a high security variable, since this does not represent a flow from
high to low. An example of this could be appending to a (secure) log file using a
low-security value.

Σ(x) = H

Σ ⊢ x := e secure
:=T1

If x is of low security, then e also has to be (or we fail).

Σ(x) = L Σ ⊢ e : L

Σ ⊢ x := e secure
:=T2

no rule for Σ(x) = L Σ ⊢ e : H

Σ ⊢ x := e secure

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.4

4 A Lattice of Security Levels

Before we go further, we generalize the security levels from just two (high and
low) to potentially multiple ones. We imagine them being arranged in a lattice,
where information is allowed to flow upwards but not downwards. I think that
technically we just need a join-semilattice, although different authors make slightly
different assumptions.

Below are two examples. This first just has the high and low security levels we
have been using. The second is one where we imagine three principals, p1, p2, and
p3, say bank account holders. They cannot see high security values (level H) and
they cannot see each other’s data since information can only flow up but not down.
The lowest level L is “public” (anyone can see it).

H

L

H

p1 p2 p3

L

A join-semilattice is defined by a partial order ℓ1 ⊑ ℓ2 (ℓ1 is a lower security
level than ℓ2) and the operation of ℓ1 ⊔ ℓ2 (the least upper bound of two security lev-
els). We also need a least element ⊥ which is the unit of ⊔ and is below every other
level. We will not go into details regarding all the algebraic laws of the semilattice,
but here are some from properties of the least upper bound and the least element.

⊥ ⊔ ℓ = ℓ ⊔ ⊥ = ℓ

⊥ ⊑ ℓ

ℓ1 ⊑ ℓ1 ⊔ ℓ2
ℓ2 ⊑ ℓ1 ⊔ ℓ2
ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ implies ℓ1 ⊔ ℓ2 ⊑ ℓ

We can generalize the rules so far from two levels to a lattice of security levels.

Σ(x) = ℓ

Σ ⊢ x : ℓ
varT

Σ ⊢ c : ⊥
constT

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2 ℓ = ℓ1 ⊔ ℓ2

Σ ⊢ e1 + e2 : ℓ
+T

Σ ⊢ e : ℓ ℓ ⊑ Σ(x)

Σ ⊢ x := e secure
:=T

The last rule expresses succinctly that information can only flow from lower to
higher levels of security, and not in any other circumstances.

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.5

5 Tracking Security Levels, Continued

With assignment specified, we move on to other language constructs.

Sequential Composition. We check both subprograms independently with re-
spect to the same security policy Σ.

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ α ; β secure
;T

At this point we have enough to check that one of our two example programs
is secure while the other one is not. We use the two-element lattice with H ⊐ L and
the security policy

Σ0 = (x : H, y : L, z : L)

We construct the following derivation bottom-up, failing at the second assignment
as expected. We elide some rule names for the sake of brevity.

Σ0 ⊢ 1 : L L ⊑ Σ0(x) = H

Σ0 ⊢ x := 1 secure
:=T

Σ0(x) = H

Σ0 ⊢ x : H Σ0 ⊢ 5 : L H = H ⊔ L

Σ0 ⊢ x+ 5 : H
+T

fails

H ⊑ Σ0(y) = L

Σ0 ⊢ y := x+ 5 secure
:=T

. . .

Σ0 ⊢ (y := x+ 5 ; z := y − 1) secure
;T

Σ0 ⊢ (x := 1 ; y := x+ 5 ; z := y − 1) secure
;T

Conditionals. Conditionals are interesting. The condition may have a security
level, but we ignore that for now because it doesn’t perform an assignment.

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ if P then α else β secure
ifT

Loops. Loops are similar to conditionals.

Σ ⊢ α secure

Σ ⊢ while P α secure
whileT

6 Taint Analysis

The rules we have so far can be used for taint checking. We think of high security
variables as being sources of taint and we track how their values are propagated
throughout a program. If a tainted value reaches a variable that is of low security,

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.6

the program can be rejected or aborted as insecure. This can be done statically (so
insecure programs are never executed) or dynamically (say, with an extra taint bit
attached to memory locations or values).

If a tainted value reaches a low-security value, we definitely have a violation
of the (for now informal) security policy. We don’t even have to declare the secu-
rity level of all variables, because the analysis can infer them. For more on taint
analysis, we recommend Schwartz et al. [2010].

However, there are some obvious situations where a flow of information does
occur, but taint analysis will not discover it. We recommend you think about pos-
sible holes in the system before moving on.

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.7

7 Indirect Flows

Consider the following simple program, where x : H and y : L.

if x = 0 then y := 1 else y := 0

With our policy so far, this program checks! Both assignments to y are with con-
stants, which have low security level. It should be clear that, intuitively, informa-
tion (illegally!) flows from x to y because x is tested in the condition, and x has a
high security level.

In order to track this kind of indirect flow we need to somehow “remember”
which tests we have performed to get to the current point in the program, and
whether these tests involved high security variables. For example, the program
above would be safe if both x and y were of the same security level (whether high
or low).

Our solution is based on the seminal paper by Volpano et al. [1996], although
the details of the formalization vary.

For that purpose we introduce a ghost variable named pc. It is called a ghost
variable because it is not allowed to appear in the program, only in our analysis
rules. We usually assume that the program starts executing at the lowest level of
security (⊥ in general, in many of our examples L). Let’s get right to the critical
rule. We now call the rules nameF , where F suggests flow.

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure Σ′ ⊢ β secure

Σ ⊢ if P then α else β secure
ifF

Let’s tease apart what’s in this rule. First, we determine the security level of P

(which will end up being the least upper bound of all variables occurring in P). If
the current program is at the lowest security level, that would be the level in which
we have to check α and β. But if we have already branched on conditions before,
we might have to pick a higher one. So ℓ′ = Σ(pc) ⊔ ℓ is the least upper bound of
the current pc and the test P . We update the security level of the pc to ℓ′ and then
check the branches.

In our example, we have x : H, y : L ⊢ x = 0 : H, so both branches are checked
with pc : H.

Now we have to reconsider the other constructs to take the pc into account.

Assignment. For assignment x := e, we have to take the least upper bound of the
level of e and level of pc and compare the result to the level of x. This rules out our
motivating example, as it should.

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e secure
:=F

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.8

Sequential Composition. It seems like as we proceed through the program the
security level of the pc keeps going up, as in the rule for conditionals. Does it ever
go down? Not explicitly, but when we have processed both branches of a condi-
tional and proceed with the program that follows it, the security level implicitly
reverts to what it was before.

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ α ; β secure
;F

For example, the following program is secure. Even though the assignments to y

are checked at a high security level (with pc : H), the assignment to z is checked
with pc : L.

(x : H, y : H, z : L, pc : L)
x := 1 ;
if x = 0 then y := 1 else y := 0 ;
z := 5

Loops. Loops are similar to conditionals in the sense that we may have to up-
grade the security level of the pc in the loop body. Somehow we lose information
about the failed test when we exit the loop. We have to see if this is really sound in
the next lecture. Let’s mark it as suspicous for now.

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure

Σ ⊢ while P α secure
whileF ?

Tests. Tests also seem a bit strange. Do we need to check that the security level of
P is lower than the pc or not?

Σ ⊢ P : ℓ ℓ ⊑ Σ(pc)

Σ ⊢ test P secure
testF ?

Formulas. The security level of a formula is easy to determine. We show some
sample rules. In the rule ⊤F the “⊥” is the least element of the lattice, not falsehood
(an unfortunate clash of notation).

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 ≤ e2 : ℓ1 ⊔ ℓ2
≤F

Σ ⊢ ⊤ : ⊥
⊤F

Σ ⊢ P : ℓ1 Σ ⊢ Q : ℓ2

Σ ⊢ P ∧Q : ℓ1 ⊔ ℓ2
∧F

Let’s read the last rule:

The formula P ∧ Q has security level ℓ1 ⊔ ℓ2 if P has security level ℓ1 and Q

has security level ℓ2.

If we wrote this as a function seclev, it would something like

seclev Σ (P ∧Q) = lub (seclev Σ P) (seclev Σ Q)

LECTURE NOTES SEPTEMBER 26, 2024

Beyond Safety Properties L10.9

References

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Symposium on Security and Privacy (2010),
pages 317–331, Oakland, California, May 2010. IEEE.

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

LECTURE NOTES SEPTEMBER 26, 2024

Lecture Notes on

Information Flow

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 11
October 1, 2024

1 Introduction

In the last lecture we informally introduced a notion of information flow and a type
system to ensure confidentiality, meaning that high security data do not flow to low
security variables. The rules are summarized in Section 5. They express an infor-
mation flow policy as a mapping Σ from variables to security levels, arranged in a
semilattice, including a ghost variable pc to track implicit flows due to conditional
tests. We often worked with the two element lattice with levels H (for high) and L

(for low) with L ⊏ H.
We assumed that an attacker can see the program and control or see the val-

ues of all low security variables before and after computation. We also assumed
the attacker can not observe nontermination (including abort after a failed test);
some of the rules would have to be changed to account for that and still capture
confidentiality.

These rules are syntactic and it is straightforward to see that they define an
algorithm for deriving that a program α is secure with respect to a security policy
Σ that assigns security levels.

What was missing was a formal semantic definition of information flow security
and a proof that the rules are sound with respect to this definition. That’s the goal
of today’s lecture. The material is adapted mostly from Volpano et al. [1996].

2 Noninterference

We have already seen that information flow is not a property of a single trace.
Simplifying the example further, consider the security policy Σ0 = (x : H, y : L),
the initial state x = 0, y = 0 and the programs

y := x+ 1 y := 1

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.2

The traces are the same, consisting of just one transition

(x = 0, y = 0) ⇒ (x = 0, y = 1)

The program on the left violates our policy, flowing information from x to y to the
extent an attacker can fully recover the initial value of x from the value of y in the
final state. The program on the right permits no such inference.

If we have just two security levels (L and H) we’d like to formalize our attacker
model using a notion of observation. We consider the program secure if two initial
states are equivalent as far as the attacker can see, then the final states must also be
equivalent as far as the attacker can see. If that were not the case, the attacker may
be able to make an inference about the secret (hidden) part of the initial state.

We define when two states ω1 and ω2 are observationally equivalent at level L with
respect to security policy Σ, written as Σ ⊢ ω1 ≈L ω2:

We define Σ ⊢ ω1 ≈L ω2 iff ω1(x) = ω2(x) for all x such that Σ(x) = L.

In our tiny example (with Σ0 = (x : H, y : L)), we have (among others):

Σ0 ⊢ (x = 0, y = 0) ≈L (x = 0, y = 0)
Σ0 ⊢ (x = 0, y = 0) ≈L (x = 1, y = 0)
Σ0 ⊢ (x = 0, y = 1) ̸≈L (x = 0, y = 2)
Σ0 ⊢ (x = 0, y = 1) ̸≈L (x = 1, y = 2)

Next we define that a program α satisfies noninterference if values of high security
variables do not affect the outcome as it may be observed at low security. The
outcome here is simply the result of evaluation (as defined in Lecture 9).

We define that program α satisfies noninterference with respect to policy Σ
iff for all ω1, ω2, ν1, and ν2,
Σ ⊢ ω1 ≈L ω2, eval ω1 α = ν1, and eval ω2 α = ν2 implies Σ ⊢ ν1 ≈L ν2.

Since evaluation is deterministic, given ω1 and ω2, there will be at most one pair ν1
and ν2. Noninterference does not talk about the case where there is no final state,
which is why this condition is called termination-insensitive noninterference.

Let’s apply it to our example. We want to show that the first program, y := x+1
does not satisfy noninterference. That is, we need to find to states, indistinguish-
able at level L that has distinguishable outcomes. So we pick

ω1 = (x = 0, y = 0) and ω2 = (x = 1, y = 0)

As we already determined, we have Σ0 ⊢ ω1 ≈L ω2. We further have

eval ω1 (y := x+ 1) = (x = 0, y = 1)
eval ω2 (y := x+ 1) = (x = 1, y = 2)

LECTURE NOTES OCTOBER 1, 2024

https://15316-cmu.github.io/2024//lectures/09-analysis.pdf

Information Flow L11.3

and Σ0 ⊢ (x = 0, y = 1) ̸≈L (x = 1, y = 2) because the low-observable outcomes
for y are different.

On the other hand, for any two (relevant) states that are low-observably equiv-
alent

ω1 = (x = a, y = b) and ω2 = (x = a′, y = b)

we have
eval ω1 (y := 1) = (x = a, y = 1)
eval ω2 (y := 1) = (x = a′, y = 1)

and
Σ0 ⊢ (x = a, y = 1) ≈L (x = a′, y = 1)

So the program y := 1 does satisfy noninterference.
By analogous reasoning,1 the program y := (x − x) + 1 also satisfies nonin-

terference, even though our type system would reject it. This is the first example
showing the incompleteness of the proposed type system with respect to information
flow. Static type systems often have to make sound (and decidable) approximations
to some underlying semantic property (which is often undecidable).

Before we move on, we generalize the noninterference property to an arbitrary
semilattice of security levels. First, observations are restricted to all levels below a
given security level ℓ:

We define Σ ⊢ ω1 ≈ℓ ω2 iff ω1(x) = ω2(x) for all x such that Σ(x) ⊑ ℓ.

From this, semantic security with respect to an information flow policy Σ general-
izes the previous definition in a straightforward way.

We define Σ |= α secure iff for all ω1, ω2, ν1, ν2, and ℓ

Σ ⊢ ω1 ≈ℓ ω2, eval ω1 α = ν1, and eval ω2 α = ν2 implies Σ ⊢ ν1 ≈ℓ ν2.

The soundness property now states:

If Σ ⊢ α secure then Σ |= α secure

The completeness property would go in the other direction, but it does not hold
as the small example y := (x − x) + 1 from above shows. We will have another
example at the end of this lecture.

3 Read Levels of Expressions and Formulas

We will need some properties of expressions and formulas. Usually, we would wait
until we find we need them in proving the main theorem (in this case, soundness),
but we show them first because they bring up the important proof technique of rule
induction.

1we did not discover this in lecture

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.4

The first is that expressions read only below their security level. The proof is
by rule induction, which means we have to show that all rules preserve the stated
property: if we assume it for all premises then it must hold for the conclusion.
We have already implicitly used it when proving soundness of inference rules (for
example, for sequent calculus for propositional logic and dynamic logic). The rea-
son that every sequent we can derive is valid is that each inference rule preserves
validity.

Lemma 1 (Expression Read Level) If Σ ⊢ e : ℓ then for every x ∈ use e, Σ(x) ⊑ ℓ.

Proof: By rule induction on the derivation of Σ ⊢ e : ℓ. We consider each case in
turn.

Case:

Σ ⊢ c : ⊥
constF

Then use c = { } and the property is vacuously true.

Case:

Σ(x) = ℓ

Σ ⊢ x : ℓ
varF

Then use x = {x} and Σ(x) = ℓ, so our property is satisfied by reflexivity
(Σ(x) = ℓ ⊑ ℓ).

Case:

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 + e2 : ℓ1 ⊔ ℓ2
+F

We have

for all x ∈ use e1, Σ(x) ⊑ ℓ1 (by ind. hyp.)
for all x ∈ use e2, Σ(x) ⊑ ℓ2 (by ind. hyp.)
x ∈ use (e1 + e2) (assumption)
x ∈ use e1 or x ∈ use e2 (by defn. of use)
Σ(x) ⊑ ℓ1 or Σ(x) ⊑ ℓ2 (from uses of the ind. hyp.)
Σ(x) ⊑ ℓ1 ⊔ ℓ2 (by property of ⊔)

□

The next lemma has the same kind of proof, so we won’t bother writing it out.

Lemma 2 (Formula Read Level) If Σ ⊢ P : ℓ then for every x ∈ use P , Σ(x) ⊑ ℓ.

Proof: By rule induction, as in the proof of Lemma 1. □

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.5

4 Soundness of the Information Flow Type System

We want to prove that Σ ⊢ α secure then Σ |= α secure. As we might expect
from the proofs in the preceding section, this should follow by rule induction on
Σ ⊢ α secure.

Before doing this more rigorously, we examine assignment, one of the base
cases.

Theorem 3 (Soundness of Information Flow Types) If Σ ⊢ α secure then Σ |= α secure

Proof: By rule induction on Σ ⊢ α secure. We’ll need one more lemma, which we
state and prove later for pedagogical purposes.

Case:

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e secure
:=F

We have to show that Σ |= x := e secure. We have the following setup:

Σ ⊢ ω1 ≈k ω2 (assumption)
eval ω1 (x := e) = ν1 (assumption)
eval ω2 (x := e) = ν2 (assumption)
. . .

Σ ⊢ ν1 ≈k ν2 (to show)

By the rules for evaluation we obtain

ν1 = ω1[x 7→ c1] for c1 = evalZ ω1 e (by defn. of eval)
ν2 = ω2[x 7→ c2] for c2 = evalZ ω2 e (by defn. of eval)

Let’s also depict what we know about the security levels.

ℓ Σ(pc)

ℓ′ = ℓ ⊔ Σ(pc)

Σ(x)

At this point we distinguish two cases: Σ(x) ⊑ k and Σ(x) ̸⊑ k.

If Σ(x) ⊑ k then also ℓ ⊑ k by transitivity. Since Σ ⊢ e : ℓ and Σ ⊢ ω1 ≈k ω2

we conclude by Lemma 1 that c1 = c2 and so Σ ⊢ ω1[x 7→ c1] ≈k ω2[x 7→ c2].

If Σ(x) ̸⊑ k then Σ ⊢ ω1[x 7→ c1] ≈k ω2[x 7→ c2] because x is not observable at
level k and Σ ⊢ ω1 ≈k ω2.

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.6

Case:

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ α ; β secure
;F

We set up this case:

Σ ⊢ ω1 ≈k ω2 (assumption)
eval ω1 (α ; β) = ν1 (assumption)
eval ω2 (α ; β) = ν2 (assumption)
. . .

Σ ⊢ ν1 ≈k ν2 (to show)

We can reason with the definition of eval.

eval ω1 α = µ1 and eval µ1 β = ν1 for some µ1 (by defn. of eval)
eval ω2 α = µ2 and eval µ2 β = ν2 for some µ2 (by defn. of eval)

Next, by induction hypothesis Σ |= α secure and together with the assump-
tion about Σ ⊢ ω1 ≈k ω2 we get

Σ ⊢ µ1 ≈k µ2 (by ind. hyp. on first premise)

This is the fact we need to apply the induction hypothesis on the security of
β, because β is evaluated in states µ1 and µ2.

Σ ⊢ ν1 ≈k ν2 (by ind. hyp. on second premise)

Fortunately, this is just what we needed to show.

Case:

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure Σ′ ⊢ β secure

Σ ⊢ if P then α else β secure
ifF

This is the most difficult case since it involves implicit flows and therefore the
ghost variable pc. It will require a lemma. But first we set up:

Σ ⊢ ω1 ≈k ω2 (assumption)
eval ω1 (if P then α else β) = ν1 (assumption)
eval ω2 (if P then α else β) = ν2 (assumption)
. . .

Σ ⊢ ν1 ≈k ν2 (to show)

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.7

Here is what we know about the security levels in the rule.

ℓ Σ(pc)

ℓ′ = ℓ ⊔ Σ(pc)

Again, we distinguish two cases: ℓ′ ⊑ k and ℓ′ ̸⊑ k.

If ℓ′ ⊑ k then also l ⊑ k and evalB ω1 P = evalB ω2 P = b for some Boolean
b by Lemma 2. If b = ⊤ we can apply the induction hypothesis to the first
premise and the evaluations eval ω1 α = ν1 and eval ω2 α = ν2.

If ℓ′ ̸⊑ k then evalB ω1 P might be different from evalB ω2 P and the different
branches might be taken. In that case we need to prove that, nevertheless,
Σ ⊢ eval ω1 α ≈k eval ω2 β.

At this point we can only conclude that because the security level of the pc is
increased to ℓ′. The salient property is that if Σ′ ⊢ α secure and Σ′(pc) = ℓ′,
then α will only write to variables with security level above ℓ′. And the same for
β. (These are instances of Lemma 4.) Fortunately, ℓ′ ̸⊑ k, so none of the writes
of α and β will be observable at level k or below and Σ ⊢ ν1 ≈k ν2.

Case:

Σ ⊢ test P secure
testF

We set up:

Σ ⊢ ω1 ≈k ω2 (assumption)
eval ω1 (test P) = ν1 (assumption)
eval ω2 (test P) = ν2 (assumption)
. . .

Σ ⊢ ν1 ≈k ν2 (to show)

By definition of eval we know that P must evaluate to true in both ω1 and
ω2 and ν1 = ω1 and ν2 = ω2. So the desired conclusion follows immediately
from the strong assumption that a poststate actually exists.

Case:

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure

Σ ⊢ while P α secure
whileF

This case is similar to the case for conditional and we leave it to the reader.
Writing it out is a good test of your understanding!

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.8

□

What remains is the confinement lemma relating the security level of the ghost
variable pc to the writing behavior of the program. We define maydef α as the
set of variables that a program may assign a value to—just all the left-hand sides of
assignments in α. This can include more variables than the set def α which includes
only those variables that α must write to.

Lemma 4 (Confinement) If Σ ⊢ α secure then for every x ∈ maydef α, Σ(pc) ⊑ Σ(x).

Proof: By rule induction on Σ ⊢ α secure. The key observation is that for an as-
signment x := e the rules require that Σ(pc) ⊑ Σ(x) and that the other rules only
maintain or raise the level. We elide the case-by-case detail. □

We conclude the lecture with another example that, according to the definition,
satisfies noninterference but we cannot derive that within the type system.

if x = 0 then y := 1 else y := 1

In the type system this fails with Σ0 = (x : H, y : L) because the assignments in the
two branches are to low-security variables. It is nevertheless secure because the
two values of y are the same, so the observable outcomes at low level are equal.

5 Summary: Information Flow Type System

References

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

LECTURE NOTES OCTOBER 1, 2024

Information Flow L11.9

Σ ⊢ e : ℓ

Σ(x) = ℓ

Σ ⊢ x : ℓ
varF

Σ ⊢ c : ⊥
constF

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2 ℓ = ℓ1 ⊔ ℓ2

Σ ⊢ e1 + e2 : ℓ
+F

Σ ⊢ P : ℓ

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 ≤ e2 : ℓ1 ⊔ ℓ2
≤F

Σ ⊢ ⊤ : ⊥
⊤F

Σ ⊢ P : ℓ1 Σ ⊢ Q : ℓ2

Σ ⊢ P ∧Q : ℓ1 ⊔ ℓ2
∧F

Σ ⊢ α secure

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e secure
:=F

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ α ; β secure
;F

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure Σ′ ⊢ β secure

Σ ⊢ if P then α else β secure
ifF

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure

Σ ⊢ while P α secure
whileF

Σ ⊢ test P secure
testF

Figure 1: Information Flow Type System
Termination insensitive, ensuring confidentiality

LECTURE NOTES OCTOBER 1, 2024

Lecture Notes on

Declassification

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 12
October 3, 2024

1 Introduction

Before we move on the core topic of today’s lecture, namely declassification, we
briefly talk about another use of information flow. So far we have focused on con-
fidentiality, that is, preventing flow reading high security data and writing them to
low security variables. The dual, integrity, prevents reading low security data and
writing them to high security variables. The prevents an attacker from violating
the integrity of high security information.

confidentiality

L

H

write

read

integrity

L

H

read

write

Reasoning about integrity is dual to what we have developed so far for confiden-
tiality and can be addressed with the same techniques.

In view of the examples showing incompleteness of the type system, one won-
ders if it is possible to reason about information flow with more precision. In other
words, can we perhaps use dynamic logic at the cost of potentially incurring an un-
decidable problem? The answer is yes, and we will think this through in Section 2.

After that (in Sections 3 and 4) we consider some common scenarios where the
kind of information flow control we have discussed so far is too strict, and we need
to allow some information to be leaked. But hopefully not too much!

2 Information Flow in Dynamic Logic

Can we reason about information flow more precisely than in the type system by
employing dynamic logic? Since noninterference is not a property of a single exe-

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.2

cution of a program, it seems at first that P → [α]Q would be insufficient, because
we always just reason about the poststate of a single execution of α.

Let’s review the definition, restricting ourselves here to just high (H) and low
(L) security levels.

We define Σ |= α secure

iff for all ω1 and ω2, Σ ⊢ ω1 ≈L ω2 implies Σ ⊢ eval ω1 α ≈L eval ω2 α

The notation in the conclusion is meant to imply that both evaluations terminate.
Maybe we start with how to represent Σ |= ω1 ≈L ω2. For each variable in

the program α there should be two versions. The low-level versions must be equal
before the program is executed, but no such constraint is imposed on the high-level
versions.

Let’s take the example

if x = 0 then y := a else y := b

where Σ0 = (x : H, y : L) and a and b are constants. We create two versions of each
variable x, x′, y, and y′. The condition that the low-security variables must be equal
is represented by

y = y′

Cool. How do we reason about the evaluation of α in the two different initial states?
One solution is the run them sequentially, but rename one of them to use only the
primed variables. So:

y = y′ → [(if x = 0 then y := a else y := b) ;
(if x′ = 0 then y′ := a else y′ := b)] Q(x, x′, y, y′)

But what should the postcondition be? It should once again express that the low-
security variables must be equal. So it is the same as the precondition! It will
automatically talk about the values of these variables after evaluation for two rea-
sons: (1) the two versions of the program compute over different variables, and (2)
[α]Q means that Q must be true in every possible poststate of α (of which there is
at most one). If there is none, then any postcondition is provable and the program
is considered secure.1

So in summary, we define for all variables occurring in the program:

Q =
∧

Σ(x)=L

(x = x′)

and then prove noninterference by proving

Q→ [α ; α′]Q

1We missed that point in lecture, but fortunately it works out. But one would still have to consider
the issue of loop invariants.

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.3

where α′ is the renaming of α by priming all variables.
Let’s apply this technique in our example α = (if x = 0 then y := a else y :=

b) by computing the weakest liberal precondition of y = y′ with respect to

wlp (α ; α′) (y = y′)

We do this by first constructing wlp α′ (y = y′).

wlp (if x′ = 0 then y′ := a else y′ := b) (y = y′)
= (x′ = 0→ wlp (y′ := a) (y = y′)) ∧ (x′ ̸= 0→ wlp (y′ = b) (y = y′))
= (x′ = 0→ y = a) ∧ (x′ ̸= 0→ y = b)
= Q(x′, y)

Now we use Q(x′, y) as a postcondition for (the unrenamed) α.

wlp (if x = 0 then y := a else y := b) Q(x′, y)
= (x = 0→ wlp (y := a) Q(x′, y)) ∧ (x ̸= 0→ wlp (y′ = b) Q(x′, y))
= (x = 0→Q(x′, a) ∧ (x ̸= 0→Q(x′, b))
= R(x, x′)

Let’s work out what this is (with some small simplifications):

R(x, x′) ↔ (x = 0 ∧ x′ = 0→ a = a)
∧ (x = 0 ∧ x′ ̸= 0→ a = b)
∧ (x ̸= 0 ∧ x′ = 0→ b = a)
∧ (x ̸= 0 ∧ x′ ̸= 0→ b = b)

The first and last conjunct are true, since a = a and so we obtain

R(x, x′) ↔ (x = 0 ∧ x′ ̸= 0→ a = b)
∧ (x ̸= 0 ∧ x′ = 0→ b = a)

If the constants a and b are equal, this is valid (regardless of x and x′) and if a and
b are not equal, this is not valid because we can pick x and x′ to be different and
falsify it. Note that our precondition y = y′ is irrelevant here since y and y′ are both
assigned to by the program.

So we conclude that the program

if x = 0 then y := a else y := b

is secure if and only if the constants a and b are equal.

3 Checking PINs

Imagine there is a variable pin holding a personal identification number (in lieu
of a password) and a variable guess holding the user’s “guess”. The job of the

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.4

following small program is to match the the user’s guess against the pin and set
the variable auth to 1 (user authenticated) or 0 (not authenticated).

if guess = pin then auth := 1 else auth := 0

Let’s see what the security level of these three variables need to be.

pin : Clearly, this shouldn’t be leaked so pin : H

guess : This is the user input, so it is low security guess : L

auth : This needs to be exposed to the user so they know if they are logged in or
not. So auth : L.

At this point we can see that this does not satisfy our definition of noninterfer-
ence and is therefore not secure according to the only reasonable policy. It is easy
to cook up an example of two states where the guesses are the same, but lead to
different outcomes depending on the pin. In the type system, the problem is re-
flected in that the comparison is high security and therefore the two branches must
be checked with pc = H. But they write to the low security variable auth .

In order to account for this kind of situation, Volpano and Smith [2000] intro-
duced a match construct into the language, comparing a guess to a secret pass-
word. We use a new kind of formula match(e1, e2) with the typing rule

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ match(e1, e2) : ℓ1 ⊓ ℓ2
matchF

For this rule to make sense we need to generalize the semilattice of security levels
we had so far to a lattice, where there is a greatest lower bound operation ℓ1⊓ℓ2 (often
pronounced “meet”). For the match expression we lower the security level of the
result, but only as far as necessary so the result is below ℓ1 and ℓ2.

Recasting our particular example

if match(guess, pin) then auth := 1 else auth := 0

it is now well-typed because we have

pin : H, guess : L, auth : L ⊢ match(guess, pin) : L

Of course, without any change to our definition of noninterference, it will still not
be semantically secure.

This raises several questions:

1. Can we relax our definition of noninterference to account for match?

2. What are the consequences of adding it to the language? We intend the effect
to be somehow confined, but we might be making a mistake and suddenly
all secrets may be leaked.

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.5

3. How can we square the fact that the match operation doesn’t preserve con-
fidentiality with the fact that it is commonly used and “seems to be fine”
(ignoring some practical issues like insecure passwords).

One particularly worrisome aspect of this construct might be the following pro-
gram:

guess := 0 ; while ¬match(guess, pin) guess := guess + 1

If pins are known to be nonnegative, this program would allow us to determine
the password!

The reason this seems to be okay in practice is that each time around the loop,
unless the pin has been determined, the attacker only rules out a single possible
pin. If the size of the pin is, say, 256 bits, then if the pins are uniformly distributed it
would take something like 2255 guesses on average to identify the password (which
is clearly not feasible).

Volpano and Smith [2000] turn this into a theorem that states that a polynomial
attacker can determine a k-bit integer (drawn from a uniform distribution) with
probably of at most (poly(k) + 1)/2k. They also point out that it is essential that
the security level of match(e1, e2) is ℓ1 ⊓ ℓ2 and cannot always be simply of low
security (L, or ⊥ in the general case).

4 Explicit Declassification

When we generalize away from the match construct, the situation becomes a lot
more complex, even if the new rule is deceptively simple:

Σ ⊢ declassifyℓ(e) : ℓ
declassifyF

declassifyℓ(e) is an expression (where ℓ defaults to ⊥ in general and L in our typical
example), but if we had a corresponding formula we could model the match with

if declassify(guess = pin) then auth := 1 else auth := 0

However, the generality comes at a price, namely that there no simple reasoning
principles covering the many applications of declassification.

There are many dimension to declassification, and we recommend Sabelfeld
and Sands [2009] for a broad discussion of the many relevant issues. A key ques-
tion is what is being declassified, and some thought needs to be given why. One
class of examples are aggregates, like averages. For example, in this course we
won’t reveal to you the scores of others, but we might reveal class averages. Of
course, if there were only two students, and you were one of them, you could infer
the other students score if you knew the average. Another example is given by

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.6

releasing (possibly anonymized) samples. Neither of these can be done without
declassification.

What is being declassified is of critical importance in determining the impact
and what an attacker might learn. For example, imagine that instead of match

we had compare that reveals the result of comparing a high security and a low
security variable, say, with less-or-equal. Unlike the match construct can then
learn the pin by using binary search through the space of possibilities.

Can we say anything generically about the declassify construct that is useful?
In other words, can we generalize noninterference to take declassification into ac-
count? In some circumstances we can, but the general definition may still require
a lot of work in each case to prove something about how much the attacker can
learn.

So let’s assume we have a program α with a single occurrence of a construct
declassifyL(e). We would like to express that the attacker can essentially only learn
about e, but nothing else. We express this by weakening the noninterference defi-
nition to allow the attacker not only know the value of the low-security variables,
but also the value of the expression e.

We attempt to define Σ |= α secure where α contains a single occurrence
of declassifyL(e) iff Σ ⊢ ω1 ≈L ω2 and eval ω1 e = eval ω2 e imply
Σ ⊢ eval ω1 α ≈L eval ω2 α

Unfortunately, this definition is not quite correct. For example, consider the follow-
ing program that attempts to declassify an average of x1, . . . , xn, all high security
variables as average : L.

x2 := x1 ;
x3 := x2 ;
. . .
xn := xn−1 ;
average := declassifyL((x1 + x2 + · · ·+ xn)/n)

Note that this program leaks the value of x1. That’s because in the condition
eval ω1 e = eval ω2 e we evaluate e in the original environments, but in this example
we assign to the free (high security) values of e before declassifying the aggregate.
So we modify our definition to:

Assume α contains a single occurrence of declassifyL(e) and for all x ∈
use e implies x ̸∈ maydef α.

For such α we define Σ |= α secure iff
Σ ⊢ ω1 ≈L ω2 and eval ω1 e = eval ω2 e imply Σ ⊢ eval ω1 α ≈L eval ω2 α

With this definition we can prove that the inference rules with the additional
rules for declassification are sound.

LECTURE NOTES OCTOBER 3, 2024

Declassification L12.7

Theorem 1 If Σ ⊢ α secure and α contains exactly one instance of declassify(e) and
for all x ∈ use e implies x ̸∈ maydef α, then Σ |= α secure according to the preceding
definition.

Proof: See Sabelfeld and Myers [2003]. □

References

Andrei Sabelfeld and Andrew C. Myers. A model for delimited information re-
lease. In International Symposium on Software Security (ISSS 2003), pages 174–191.
Springer LNCS 3233, November 2003.

Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5):517–548, 2009.

Dennis M. Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In
M. N. Wegman and T. W. Reps, editors, Symposium on Principles of Programming
Languages, pages 268–276, Boston, Massachusetts, January 2000. ACM.

LECTURE NOTES OCTOBER 3, 2024

Lecture Notes on

Termination-Sensitive Noninterference

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 13
October 22, 2024

1 Introduction

Our assumption so far in the semantic definition of information flow has been that
an attacker can only compare the values of low-security variables in the poststates.

We define Σ |= α secure (program α satisfies termination-insensitive non-
interference with respect to policy Σ)
iff

for all ℓ, ω1, ω2, ν1, and ν2,

whenever Σ ⊢ ω1 ≈ℓ ω2,

and eval ω1 α = ν1,

and eval ω2 α = ν2

then Σ ⊢ ν1 ≈ℓ ν2.

This ignores that possibility that an attacker might notice that a program does not
terminate. For example, with (x : H) and L ⊏ H

if x > 5 then (while ⊤ skip) else skip

an observer can tell if x > 5 based on whether the program terminates. But accord-
ing to our policy it is secure at level L! In this example, that’s easy to see because
whenever ν1 and ν2 both exist, then ν1 ≈L ν2 because there aren’t even any low-
security variables. If α does not terminate (that is, has no poststate) in one or both
of the two initial states, then the implication is vacuously true.

The first goal of today’s lecture is to sharpen our definition of noninterference
so that nontermination is considered observable, and the example above would
be rejected. The second goal will be to revise the information flow type system
so it is sound with respect to the sharpened definition. For general expositions

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.2

of today’s topic, see Hedin and Sabelfeld [2012], Sabelfeld and Myers [2003], and
earlier seminal work by Volpano and Smith [1997].

This lecture is also a preparation for the next lecture where we talk about timing
attacks where information can leak by observing how long a program takes to exe-
cute. These kind of attacks are quite common and real concerns in actual systems
[Brumley and Boneh, 2005], so it is important to study them from the programming
perspective.

2 Termination-Sensitive Noninterference

Intuitively, we’d like to say that if eval ω1α and eval ω2 α both return a poststate,
then they still must be equivalent to an observer at level ℓ. Moreoever, if one does
not terminate then the other one doesn’t either. In this latter case, there are no
poststates to compare. The traditional definition [Volpano and Smith, 1997] cap-
tures this by stating that if eval ω1 α = ν1 then there must also be an ν2 such that
eval ω2 α = ν2, and the two poststates must be observably equivalent. This slightly
asymmetric definition is correct due to the symmetry of the ≈ℓ relation. If α termi-
nates in prestate ω1 but does not in ω2, then we can just swap the two prestates to
show that such a program is not secure. We write Σ |= α secure

∞ for termination-
sensitive noninterference.

We define Σ |= α secure
∞ (program α satisfies termination-sensitive non-

interference with respect to policy Σ)
iff

for all ℓ, ω1, ω2, and ν1,

whenever Σ ⊢ ω1 ≈ℓ ω2,

and eval ω1 α = ν1,

then eval ω2 α = ν2 for some ν2

such that Σ ⊢ ν1 ≈ℓ ν2.

Let’s make sure our example program (let’s call it α0) is not secure under this
definition. For this purpose we have to find a counterexample, that is, two states
ω1 and ω2 that are low-security equivalent such that α0 terminates in state ω1 but
not in ω2. Fortunately, that is easy: for

α0 = (if x > 5 then (while ⊤ skip) else skip)

we can use

ω1 = (x 7→ 0) eval ω1 α0 = (x 7→ 0)
ω2 = (x 7→ 7) there exists no ν2 with eval ω2 α0 = ν2

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.3

3 Sharpening the Information Flow Type System

The information flow type system so far will admit the program α0 as secure. The
idea is now to revisit the rules to determine how we might need to update them to
enforce termination-sensitive noninterference. To parallel the definition of nonin-
terference, we write Σ ⊢ α secure

∞.
The first thing we note is that the security level of expressions and formulas do

not change—they remain the least upper bound of the levels of all variables occur-
ring in them. This is due to our decision that expressions and Boolean conditions
always terminate (and are always safe).

So we can focus our attention on the program constructs. In the fragment we
treat, every command will be safe, that is, we handle SAFETINY.

Assignment. We first show the prior (termination-insensitive) version of the rule.

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e secure
:=F

Because expressions are not involved with nontermination, this rule remains un-
changed! This is not a proof, of course, it is not difficult to update the one from the
termination-insensitive case. If x := e terminates in ω1 then it also will in ω2, so the
two formulations are equivalent in this case.

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e secure∞
:=F∞

Sequential Composition. Our previous rule can be summarized as saying that
termination-insensitive information flow is compositional.

Σ ⊢ α secure Σ ⊢ β secure

Σ ⊢ α ; β secure
;F

Is that still the case, that is, is termination-sensitive information flow also composi-
tional? It is not entirely obvious when α does not terminate, but we conjecture:

Σ ⊢ α secure
∞ Σ ⊢ β secure

∞

Σ ⊢ α ; β secure
∞

;F∞

Let’s try to prove or refute the soundness of this. So we set up:

Σ |= α secure
∞ (1, first premise)

Σ |= β secure
∞ (2, second premise)

Σ ⊢ ω1 ≈ℓ ω2 (3, assumption)

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.4

eval ω1 (α ; β) = ν1 (4, ssumption)
. . .

eval ω2 (α ; β) = ν2 for some ν2 (to show)
with Σ ⊢ ν1 ≈ℓ ν2 (to show)

We start by expanding the definition of evaluation for sequential composition. We
show the new lines in blue after each step.

Σ |= α secure
∞ (1, first premise)

Σ |= β secure
∞ (2, second premise)

Σ ⊢ ω1 ≈ℓ ω2 (3, assumption)
eval ω1 (α ; β) = ν1 (4, assumption)
eval ω1 α = µ1 for some µ1 (5 and)
and eval µ1 β = ν1 (6, from (4) by defn. of eval)
. . .

eval ω2 (α ; β) = ν2 for some ν2 (to show)
with Σ ⊢ ν1 ≈ℓ ν2 (to show)

At this point we can use the assumption (coming from the first premise) that α is
secure.

Σ |= α secure
∞ (1, first premise)

Σ |= β secure
∞ (2, second premise)

Σ ⊢ ω1 ≈ℓ ω2 (3, assumption)
eval ω1 (α ; β) = ν1 (4, assumption)
eval ω1 α = µ1 for some µ1 (5, and)
and eval µ1 β = ν1 (6, from (4) by defn. of eval)
eval ω2 α = µ2 for some µ2 (7 and)
with Σ ⊢ µ1 ≈ℓ µ2 (8, from (1), (3), and (5))
. . .

eval ω2 (α ; β) = ν2 for some ν2 (to show)
with Σ ⊢ ν1 ≈ℓ ν2 (to show)

At this point we have an evaluation of β from a prestate µ1 and a state µ2 that is ℓ-
equivalent to it. So we can use the security for β (coming from the second premise).

Σ |= α secure
∞ (1, first premise)

Σ |= β secure
∞ (2, second premise)

Σ ⊢ ω1 ≈ℓ ω2 (3, assumption)
eval ω1 (α ; β) = ν1 (4, assumption)
eval ω1 α = µ1 for some µ1 (5, and)
and eval µ1 β = ν1 (6, by defn. of eval)
eval ω2 α = µ2 for some µ2 (7 and)
with Σ ⊢ µ1 ≈ℓ µ2 (8, from (1), (3), and (5))
eval µ2 β = ν2 for some ν2 (9 and)

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.5

with Σ ⊢ ν1 ≈ℓ ν2 (10, from (2), (6), and (8))
. . .

eval ω2 (α ; β) = ν2 for some ν2 (to show)
with Σ ⊢ ν1 ≈ℓ ν2 (to show)

At this point we have evaluations of α and β in corresponding states so we can close
the gap simply by composing them. The ν2 we had to find is (not surprisingly) the
poststate of β when evaluated in prestate µ2.

Σ |= α secure
∞ (1, first premise)

Σ |= β secure
∞ (2, second premise)

Σ ⊢ ω1 ≈ℓ ω2 (3, assumption)
eval ω1 (α ; β) = ν1 (4, assumption)
eval ω1 α = µ1 for some µ1 (5, and)
and eval µ1 β = ν1 (6, by defn. of eval)
eval ω2 α = µ2 for some µ2 (7 and)
with Σ ⊢ µ1 ≈ℓ µ2 (8, from (1), (3), and (5))
eval µ2 β = ν2 for some ν2 (9 and)
with Σ ⊢ ν1 ≈ℓ ν2 (10, from (2), (6), and (8))
eval ω2 (α ; β) = ν2 (by defn. of eval)
with Σ ⊢ ν1 ≈ℓ ν2 (copied from (10))

Good. Our intuition that even termination-sensitive noninterference is composi-
tional has been confirmed.

Skip. This does nothing, so the rule trivially remains the same.

Σ ⊢ skip secure
∞

skipF∞

Conditionals. The if-then-else construct somehow doesn’t seem to be involved in
nontermination, only loops are. We therefore expect that the rule doesn’t change.

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure
∞ Σ′ ⊢ β secure

∞

Σ ⊢ if P then α else β secure
∞

ifF∞

The proof is just like before, in the termination-insensitive case. The fact that we
now have to account for the nontermination of α or β changes the details of rea-
soning, of course, but the possibility of nontermination just comes from the nonter-
mination of each branch. So we omit this case.

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.6

Loops. Here, we’d expect the crux of the changes because loops introduce non-
termination into the language. First, the earlier rule:

Σ ⊢ P : ℓ ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure

Σ ⊢ while P α secure
whileF

We see that there are essentially two reasons why a while loop may leak informa-
tion using nontermination (with (x : H))

1. In the example if x > 5 then (while ⊤ skip) else skip it is because the loop
is in a context where we have pc : H.

2. In the example while x = 8 skip it is because the loop guard is of high
security.

Since nontermination is observed “at the outermost level” and not by a variable
in the local context, it seems we have to require that both the security level of the
pc and the guard are ⊥, that is, the least element of the lattice. This means that
ℓ′ = Σ(pc) ⊔ ℓ should also be ⊥, and we don’t need to update the security level of
pc.

Σ ⊢ P : ⊥ Σ(pc) = ⊥ Σ ⊢ α secure
∞

Σ ⊢ while P α secure
∞

whileF∞

Is this sufficient to guarantee termination-sensitive noninterference? We set up:

Σ |= α secure
∞ (1, premise)

Σ ⊢ ω1 ≈ℓ ω2 (2, assumption)
eval ω1 (while P α) = ν1 (3, assumption)
. . .

eval ω2 (while P α) = ν2 for some ν2 (to show)
with Σ ⊢ ν1 ≈ℓ ν2 (to show)

At this point, there is a small hiccup: the evaluation of a loop may refer back again
to the evaluation of the same loop. We therefore use an auxiliary induction on the
number of times we iterate the loop when computing eval ω1 (while P α) to ν1. We
know it does compute a poststate, so the number of steps is finite and the induction
makes sense. Let’s call that number n (which is also the notation we chose in the
semantic definition of ωJwhile P αKnν, see page L4.6 of Lecture 4).

Case: n = 0. Then evalB ω1 P = ⊥ and ν1 = ω1. Because P only contains variables
of security level ⊥ ⊑ ℓ and Σ ⊢ ω1 ≈ℓ ω2, we also have evalB ω2 P = ⊥.
(See Lemma 2 on page L11.4 of Lecture 11.) Therefore ν2 = ω2 will satisfy the
requirements of the theorem.

LECTURE NOTES OCTOBER 22, 2024

https://15316-cmu.github.io/2024//lectures/04-semantics.pdf
https://15316-cmu.github.io/2024//lectures/11-infoflow.pdf

Termination-Sensitive Noninterference L13.7

Case: n > 0. Then evalB ω1 P = ⊤ and eval ω1 (α ; while P α) = ν1 As in
the previous case evalB ω2 P = ⊤ and it remains to show that eval ω2 (α ;
while P α) = ν2 for some ν2 with Σ ⊢ ν1 ≈ℓ ν2.

As in the case for composition (and exploiting the security of α that comes
from the premise) this reduces to showing that eval µ1 (while P α) = ν1
implies eval µ2 (while P α) = ν2 for some ν2 indistinguishable from ν1 at
level ℓ, with the knowledge that Σ ⊢ µ1 ≈ℓ µ2. This is true because of the
induction hypothesis on n − 1 < n, which is the remaining number of times
the loop is traversed.

Tests. Recall that test P aborts if P is false. This means it represents another
type of program (besides a loop) that does not have a poststate. Lumping together
aborting a program and nontermination may be questionable in practice, but if we
consider “nontermination” simply as representing the absence of a poststate, we
would have defined

test P ≜ while ¬P skip

Then the rule derived from these considerations would be:

Σ ⊢ P : ⊥ Σ(pc) = ⊥

Σ ⊢ test P secure
∞

testF∞

All together we obtain soundness.

Theorem 1 (Soundness of termination-sensitive information flow types) If Σ ⊢ α secure
∞

then Σ |= α secure
∞

Proof: All the rules are sound, that is, the preserve semantic validity of the premises.
By a trivial induction over the derivation of Σ ⊢ α secure

∞, every program judged
secure satisfies termination-sensitive noninterference. □

4 Further Discussion

The soundness of all rules for Σ ⊢ α secure
∞ guarantees that it implies Σ |=

α secure
∞, that is, termination-sensitive information flow. The other direction

(completeness) is not true, and there are simple counterexamples.
We also have the intuition that it should be stricter than the termination-insensitive

one. That should be true syntactically, in the type system, and semantically, with
respect to noninterference. Let’s check that:

Theorem 2 If Σ |= α secure
∞ then Σ |= α secure.

Proof: We set up:

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.8

Σ |= α secure
∞ (1, assumption)

Σ ⊢ ω1 ≈ℓ ω2 (2, assumption)
eval ω1 α = ν1 (3, assumption)
eval ω2 α = ν2 (4, assumption)
. . .

Σ ⊢ ν1 ≈ℓ ν2 (to show)

We can now apply the definition of secure∞.

Σ |= α secure
∞ (1, assumption)

Σ ⊢ ω1 ≈ℓ ω2 (2, assumption)
eval ω1 α = ν1 (3, assumption)
eval ω2 α = ν2 (4, assumption)
eval ω2 α = ν ′

2
for some ν ′

2
with (5 and)

Σ ⊢ ν1 ≈ℓ ν
′

2
(6, from (1), (2), and (3))

. . .

Σ ⊢ ν1 ≈ℓ ν2 (to show)

Since our language is deterministic, we have ν2 = ν ′
2

and the proof is complete.

Σ |= α secure
∞ (1, assumption)

Σ ⊢ ω1 ≈ℓ ω2 (2, assumption)
eval ω1 α = ν1 (3, assumption)
eval ω2 α = ν2 (4, assumption)
eval ω2 α = ν ′

2
for some ν ′

2
with (5 and)

Σ ⊢ ν1 ≈ℓ ν
′

2
(6, from (1), (2), and (3))

Σ ⊢ ν1 ≈ℓ ν2 (7, from (4), (5), and (6) by determinism)

□

Any syntactic (decidable) type system for a Turing-complete language may be
considered an approximation of a true semantic property. This is the essence of
Rice’s theorem. Any type system that restricts information flow then represents
a tradeoff between the kind of programs that are allowed, and the simplicity and
uniformity of the system. This is difficult to discuss in the abstract, so in Lab 2 you
will have the opportunity to explore it a bit yourself. The information flow type
systems from the last three lectures all seems to represent reasonable compromises:
the rules are sound and quite simple, and many programs can be written (even if
some require declassification).

Perhaps the most significant issue is that there exist further side channels by
which information can be obtain, most notably perhaps by observing program run-
time. We will complete this investigation in the next lecture.q

LECTURE NOTES OCTOBER 22, 2024

Termination-Sensitive Noninterference L13.9

References

David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, August 2005.

Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control.
In Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann, editors, Software
Safety and Security - Tools for Analysis and Verification, pages 319–347. IOS Press,
2012.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

Dennis M. Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In 10th Computer Security Foundations Workshop (CSFW 1997), pages 156–
168. IEEE Computer Society, June 1997.

LECTURE NOTES OCTOBER 22, 2024

Lecture Notes on

Timing Attacks

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 14
October 24, 2024

1 Introduction

Deducing secrets (like passwords or private keys) by observing how long a pro-
gram runs is a commonly used attack on computer security. This is true despite the
uncertainties about how long a program will actually run (which is only stochas-
tically connected to the source code). For example, Brumley and Boneh [2005]
demonstrate that remote timing attacks are quite feasible and can be launched
against security-critical code such as an implementation of SSL. They had to run
a program many times, but in the end they were successful in exploiting data-
dependent optimizations in the cryptographic primitives underlying SSL. Due
to the serious nature of such security threats, defenses have been devised. The
primary ones are (1) introduce randomness into the computation so that the time
variations don’t give away the secret information, and (2) sharpen the information
flow type system to ensure “constant-time” computation. We explore the second
and briefly touch on the first. Timing attacks against cryptographic primitives are
still being discovered even today.

There are other so-called side channels for information. Here are some:

• Power consumption

• Memory access patterns

• Sequence of instructions executed

• Electromagnetic radiation emitted from the hardware

Some of them require direct access to some hardware, other can be launched re-
motely. What they have in common in that they use physical properties of what
takes place in a computer when code is executed that is outside of the usual ab-
stract model of computation we work with when reasoning about our code. This

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.2

is a significant difference between functional correctness (e.g., “this code will sort
a list”) and security. In the latter case we can only prove security against a policy
and a particular threat model—we can’t make any blanket statements about attacks
that might fall outside the model.

As an example of the complexity of side-channel attacks that occur in real life,
we briefly consider Spectre [Kocher et al., 2019]. It exploits a some features of a
modern processor, namely speculative execution, together with timing attack on
the memory cache. They use the following sample code to illustrate their tech-
nique:

if (x < array1_size)

y = array2[array1[x] * 4096];

This code tries to guard access to array1 to prevent out-of-bounds access. In the
first phase of the attack, it is given many valid values for x, training the proces-
sor’s branch prediction algorithm to believe that this branch will usually be taken.
In the second phase, it is given and input that is out of bounds, that is, greater
than array1_size. Branch prediction will assume the test turns out to be true
and starts executing y = array2[array1[x] * 4096]. When the processor
discovers that the condition is actually false, it will abandon all the actions taken,
such as retrieving array1[x], multiplying it to obtain some address addr, re-
trieving a value from array2[addr], and any other registers, condition, codes,
etc. However, one thing it does not undo is storing some fetched data in the mem-
ory cache. Note that the “secret” data at array1[x] are used as an address, so the
data at this address might still be in the cache. Now in the third phase the attacker
launches a timing attack against the cache to determine which memory region is
now in the cache, which can reveal the underlying data at array1[x].

2 Some Simple Timing Attacks

Real timing attacks [Brumley and Boneh, 2005] are complex, among other things
due to timing variations in processor execution. We abstract away from these de-
tails and it turns out that the main defenses, like “constant-time programming”, are
ultimately the same. Here are some timing attacks, intentionally somewhat hypo-
thetical (slightly outside our language) to give you the opportunity to devise your
own in Lab 2.

With Σ0 = (pin : H), we write

while (pin > 0) pin := pin − 1

Assuming the original value of pin (say c) is positive, this will take something like
4∗c+2 steps to terminate. Here we count every arithmetic operation or comparison
as 1 step, the assignment as 1 step, and processing of while as another step. While

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.3

details may vary with the cost model, it should be clear that it is easy to determine
the secret value of pin from the running time.

This code, however, does not represent a very useful attack, because it is too
slow, for example, if the pin has 256 bits. But we can modify it into a standard
strawman example (omitting any details regarding possibly necessary declassifica-
tion):

auth := 1 ;
i := 0 ;
while (i < len)
if pin[i] = guess[i]
then i := i+ 1
else (auth := 0 ; i = len)

Here str [i] could either access the ith character of a string str or the ith bit of the
number. len would represent either the length of the string or the width of the pin
in bits.

Let’s assume there are nonnegative integers, and len is the number of bits. If
the lowest bit of the guess is incorrect, the program will terminate with auth almost
immediately. If it is correct, it will go around the loop at least one more time, and
therefore take longer. That will allow us to infer the lowest bit of the secret pin.
Our next guess will have that bit correct and now find the next bit, etc. With at
most 2 ∗ len experiments we should be able to determine all bits.

3 Time-Sensitive Noninterference

As in the last lecture, our first job will be to define the correct semantic notion of
noninterference and measure it against the examples. We would like that if both
programs terminate from prestates that are indistinguishable for a low-security ob-
server, they take the same number of steps and terminate in low-security equiva-
lent states. In order to express the number of steps, we change our evaluation
function to return notcc only a poststate, but also the number of steps taken. The
latter will be defined shortly.

We define Σ |= α secure
t (program α satisfies time-sensitive noninterfer-

ence with respect to policy Σ)
iff

for all ℓ, ω1, ω2, ν1, ν2, n1, and n2,

whenever Σ ⊢ ω1 ≈ℓ ω2,

and eval ω1 α = (n1, ν1),

and eval ω2 α = (n2, ν2),

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.4

then Σ ⊢ ν1 ≈ℓ ν2 and n1 = n2.

Note that we have disregarded nontermination in this definition. It is easy to com-
bine it with the requirement to be termination-sensitive, but we prefer to separate
these concerns for now.

Now our first example (with Σ0 = (pin : H)) clearly does not satisfy this defini-
tion, which is what we would hope.

α0 = (while (pin > 0) pin := pin − 1)

A simple counterexample is

ω1 = (pin 7→ 0) eval ω1 α0 = (2, pin 7→ 0)
ω2 = (pin 7→ 1) eval ω2 α0 = (6, pin 7→ 0)

We have Σ0 ⊢ ω1 ≈L ω2 (since pin : H), and the poststates are indistinguishable (not
only for a low-security observer, but in general), but the steps n1 = 2 ̸= 6 = n2.

The second example is subject to a similar analysis, but we’d need to be careful
about declassification which we would like to avoid.

4 Evaluation with Time

Next we should define evaluation with step-counting. This is quite straightfor-
ward, just a bit tedious. You can find the summary of this exercise in Figure 1.
We have to recognize that this form of timing isn’t realistic and hope that to some
extent the design of the information flow type system can make up for this lack of
realism.

One point about the Boolean operations: we do not want their running times
to be data-dependent. This means that evaluating ⊤ ∧ P and ⊥ ∧ P should take
the same amount of time. In other words, the Boolean operations should not be
“short-circuiting”. Recall that in a previous lecture we determined that it didn’t
matter whether they were short-circuiting or not since all expressions and formulas
are safe and terminating. In this context it does matter, and steps may need to be
taken to ensure data independence.

Timing considerations raise another point about abstractions. So far we have
said that variables can hold arbitrary integers. However, this means that the run-
ning times of many operations like addition cannot be data-independent. So we
assume instead that integers are implemented with a fixed range, like 64 bits or 256
bits and that arithmetic is modular. This creates a number of complications when
reasoning about the correctness of code, but it actually makes reasoning about cer-
tain security properties (especially those that are timing-sensitive) both more real-
istic and simpler.

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.5

5 A Type System for Constant-Time Computation

Next comes the task to develop a type system that enforces time-sensitive noninter-
ference, which is usually called “constant-time”. However, it isn’t actually constant
time, it is just that the running time can only depend on low-security inputs. In
order to formalize that, we once again proceed construct by construct. We write
Σ ⊢ α secure

t for time-sensitive security with respect to signature Σ.

Assignment. For now, there doesn’t seem to be any reason to change our rule
for assignment. The point is that the time for the evaluation of an expression e is
some n, regardless of the state ω. So it just once again comes down to the basic
information flow properties.

Σ ⊢ e : ℓ ℓ′ = Σ(pc) ⊔ ℓ ℓ′ ⊑ Σ(x)

Σ ⊢ x := e securet
:=F t,preliminary version

See the end of this section for further thoughts on assignment.

Sequential Composition and skip. If α and β are indistinguishable even via a
timing channel, then their composition should not be, either. The proof is straight-
forward and follows familiar patterns, so we omit it here. skip is trivial, as usual.

Σ ⊢ α secure
t Σ ⊢ β secure

t

Σ ⊢ α ; β secure
t

;F t

Σ ⊢ skip secure
t
skipF t

Conditionals. The first instinct might be that in a conditional, both branches need
to take the same amount of time. Under such a discipline, we could rewrite our
motivating example as follows:

auth := 1 ;
i := 0 ;
while (i < len)
if pin[i] = guess[i]
then auth := auth

else auth := 0 ;
i := i+ 1

The good part here is that we go around the loop the same number of times, re-
gardless whether the guess is correct or not. The bad part is that even though the
two branches, abstractly, take the same amount of time that is unlikely to be case in
practice. Any reasonable compiler would optimize auth := auth into a no-op and
the loop would leak some timing information.

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.6

The problem actually goes deeper: in order to have a type system for time-
sensitive information flow that allows such a program, the type system would have
to capture exactly how long an expression or command takes to evaluate. Not only
would this be inaccurate with respect to the actually running code, it would also
require our type-checker to perform arithmetic reasoning. This would just be too
brittle a design.

Instead, we take a more drastic step: for any conditional, we require that the
formula P depends only on low-security variables. This rules out our sample pro-
gram above, because the comparison pin[i] = guess[i] depends on pin which is of
high security.

Intuitively, we are repeating the solution for termination-sensitive information
flow from the last lecture, but with conditionals instead of loops. Here is the first
formulation: we just require ℓ′ to be ⊥, the least element of the security lattice.

Σ ⊢ P : ℓ ⊥ = ℓ′ = Σ(pc) ⊔ ℓ Σ′ = Σ[pc 7→ ℓ′] Σ′ ⊢ α secure
t Σ′ ⊢ β secure

t

Σ ⊢ if P then α else β secure
t

ifF t

We notice that this requires ℓ = Σ(pc) = ⊥. And if ℓ′ = ⊥ = ℓ, there is no need to
update the pc, so we can use Σ′ = Σ.

Σ ⊢ P : ⊥ Σ ⊢ α secure
t Σ ⊢ β secure

t

Σ ⊢ if P then α else β secure
t

ifF t

At this point we realize we don’t need pc at all, since we only introduced it to track
the implicit flow from the condition into the branches of an if-then-else.

With this simplification, we have drastically reduced the range of programs that
are considered secure. So how do we rewrite our example? We have to “inline” the
conditional as an ordinary operation. Note that the number of bit (or maximal
length of the string) would have to be a low-security variable.

auth := 1 ;
i := 0 ;
while (i < len)
auth := auth ∧ (pin[i] = guess[i]) ;
i := i+ 1

This is just outside the range of what our language permits in that equality pro-
duces a Boolean, and conjunction takes two Booleans, but here they are integers.
This could be solved any number of ways. Perhaps the simplest is that the Boolean
operators are overloaded to also work on integers, for example, with ⊥ represented
by 0 and ⊤ by 1, or by anything nonzero.

Also, we go back and think of pin and guess as strings rather than nonnegative
integers, this code still makes sense and is not subject to timing attacks.

Let’s prove the soundness of this rule. We set up:

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.7

Σ |= P : ⊥ (1, first premise)
Σ |= α secure

t (2, second premise)
Σ |= β secure

t (3, third premise)
Σ ⊢ ω1 ≈ℓ ω2 (4, assumption)
eval ω1 (if P then α else β) = (n1, ν1) (5, assumption)
eval ω2 (if P then α else β) = (n2, ν2) (6, assumption)
. . .

Σ ⊢ ν1 ≈ℓ ν2 and (to show)
n1 = n2 (to show)

Because Σ ⊢ ω1 ≈ℓ ω2 and ⊥ ⊑ ℓ, we have that eval ω1 P = eval ω2 P = (k, b) for
some nonnegative time k and Boolean b. We consider the case where b = ⊤; the
other is symmetric. Then

eval ω1 (if P then α else β) = (k +m1 + 1, ν1)

where eval ω1 α = (m1, ν1) and n1 = k +m1 + 1.
Also

eval ω2 (if P then α else β) = (k +m2 + 1, ν2)

where eval ω2 α = (m2, ν2) and n2 = k +m2 + 1.
Since α is secure (that is, Σ |= α secure

t, which comes from the second premise)
we get Σ ⊢ ν1 ≈ℓ ν2 (which is one of the two properties we needed to prove) and
m1 = m2.

Therefore, also n1 = k+m1+1 = k+m2+1 = n2, which is the second property
we needed to prove.

Loops. For the same reason as conditionals, we require the loop guard to be of
low security.

Σ ⊢ P : ⊥ Σ ⊢ α secure
t

Σ ⊢ while P α secure
t

whileF t

Tests. If the test fails and the program aborts we have a different kind of channel.
Again, the simplest condition that avoid information flow here (even if outside of
the definition) is to require the test to be of low security.

Σ ⊢ P : ⊥

Σ ⊢ test P secure
t
testF

Assignment Revisited. Since we eliminated the ghost variable pc, we simplify
the rule for assignment.

Σ ⊢ e : ℓ ℓ ⊑ Σ(x)

Σ ⊢ x := e securet
:=F t

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.8

A summary of the rules can be found in Figure 2. It is remarkably simple be-
cause it is not afraid to rule out many programs. The soundness of all the rules
taken together gives us the soundness of the whole type system.

Theorem 1 (Soundness of timing-sensitive information flow typing)

If Σ ⊢ α secure
t then Σ |= α secure

t

Proof: All the rules are sound in the sense that they preserve semantic validity of
the premises. By a trivial induction over the derivation of Σ ⊢ α secure

t we obtain
Σ |= α secure

t. □

Comparing the type system against the one from the last lecture for termination-
sensitive noninterference, we see that it actually enforces that as well. One can
update the definition of noninterference and statement of the above theorem to
account for that.

6 Randomization

Another defense against timing attacks is to introduce randomization into the pro-
gram. Even though an observer might still be able to observe timing, this infor-
mation will then be insufficient to determine the secret. In our example (using the
interpretation of pins and guesses as large integers) we could write something like:

r := random() ;
pin := pin + r ;
guess := guess + r ;
auth := 1 ;
i := 0 ;
while (i < len)
if pin[i] = guess[i]
then i := i+ 1
else (auth := 0 ; i = len)

Every time this program is run, it is like to use a different random number, es-
sentially making it impossible to draw useful conclusions from the running times.
Some care must be taken for the randomization and its result to be sufficiently uni-
form.

References

David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, August 2005.

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.9

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In
Symposium on Security and Privacy (SP 2019), pages 1–19, San Francisco, Califor-
nia, May 2019. IEEE.

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.10

evalZ ω c = (0, c)
evalZ ω x = (1, ω(x))
evalZ ω (e1 + e2) = (n1 + n2 + 1, c1 + c2)

where evalZ ω e1 = (n1, c1)
and evalZ ω e2 = (n2, c2)

evalB ω (e1 ≤ e2) = (n1 + n2 + 1, c1 ≤ c2)
where evalZ ω e1 = (n1, c1)
and evalZ ω e2 = (n2, c2)

evalB ω (⊤) = (0,⊤)
evalB ω (⊥) = (0,⊥)
evalB ω (P ∧Q) = (n1 + n2 + 1, b1 ∧ b2)

where evalB ω P = (n1, b1)
and ∧evalB ω Q = (n2, b2)

eval ω (x := e) = (n+ 1, ω[x 7→ c])
where evalZ ω e = (n, c)

eval ω (α ; β) = (n1 + n2 + 1, ν)
where eval ω α = (n1, µ)
and eval µ β = (n+ 1, ν)

eval ω (skip) = (1, ω)

eval ω (if P then α else β) = (k + n+ 1, ν)
where eval ω P = (k,⊤) and eval ω α = (n, ν)
or eval ω P = (k,⊥) and eval ω β = (n, ν)

eval ω (while P α) = (k + n+ 1, ν)
where eval ω P = (k,⊥) and n = 0 and ν = ω

or eval ω P = (k,⊤) and eval ω (α ; while P α) = (n, ν)

Figure 1: Timed Evaluation

LECTURE NOTES OCTOBER 24, 2024

Timing Attacks L14.11

Σ ⊢ e : ℓ ℓ ⊑ Σ(x)

Σ ⊢ x := e securet
:=F t

Σ ⊢ α secure
t Σ ⊢ β secure

t

Σ ⊢ α ; β secure
t

;F t

Σ ⊢ skip secure
t
skipF t

Σ ⊢ P : ⊥ Σ ⊢ α secure
t Σ ⊢ β secure

t

Σ ⊢ if P then α else β secure
t

ifF t
Σ ⊢ P : ⊥ Σ ⊢ α secure

t

Σ ⊢ while P α secure
t

whileF t

Σ ⊢ P : ⊥

Σ ⊢ test P secure
t
testF

Figure 2: Timing Sensitive Information Flow Typing

LECTURE NOTES OCTOBER 24, 2024

Lecture Notes on

Authorization Logic

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 15
October 29, 2024

1 Introduction

We started the course with an analysis of safety properties of computations, and
how to account for them statically (via verification conditions in dynamic logic) or
dynamically (via sandboxing). Then we moved on to the more complex information
flow properties. An attacker may discover secrets via particular programs or inputs
in a variety of ways, with side-channel attacks (for example, timing attacks) being
the most sophisticated. Countermeasures are mostly via information-flow type
systems.

With this lecture we are starting a new section of the course, considering authen-
tication (you are who you say you are) and authorization (you are allowed to perform
the actions you are trying to perform). Authentication and authorization are per-
vasive in today’s computing environment, from shared file systems like AFS and
cloud services like Github, to shopping and banking services. Today’s and the next
lecture will focus on authorization, followed in later lectures by authentication. In
many cases, authorization is just embedded in code. Once authorization becomes
complex, this can easily be compromised by bugs since flow of the authorization
checks through a program can be difficult to audit. It can also be difficult to even
understand what the authorization policy actually is, which then means it is hard
to compare it against the code.

In this lecture we take a very general approach, expressing policy in an autho-
rization logic. Like in other applications we have seen, the logic is the interface be-
tween policy and implementation. It expresses, at a high level of abstraction, who is
allowed to do what in a complex system. On one side, this serves as a specification
one can reason about rigorously, divorced from an implementation. On the other
side, we can use it directly to enforce authorization policies in an implementation
by using formal proofs of authorization. Abadi [2003] gives a general overview of

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.2

authorization logics. The architecture where formal proofs are used was pioneered
by Bauer [2003] under the name of proof-carrying authorization (PCA).

Among the direct applications of PCA are the Grey systems [Bauer et al., 2005]
for access to offices in Cylab at CMU, and a proof-carrying file system that particularly
explored issues of efficiency [Garg, 2009, Garg and Pfenning, 2010]. We ignore here
a number of practically relevant issues, such as revocation and temporal aspects of
authorization. Once added [DeYoung et al., 2007], authorization logic is expressive
enough, for example, to express the rules governing access to classified information
in the American intelligence community [Garg et al., 2009].

2 Affirmations

Early on this class, we introduced and reasoning in Boolean logic, with connectives
such as conjunction, disjunction, implication, etc. Then we introduced so-called
modal operators, [α]Q, ⟨α⟩Q that speak about programs, and □P that guarantees
validity of P (that is, truth in all possible states).

In order to express access control policies logically, we need a new kind of modal
operator that expresses an affirmation, A says P (principal A says proposition P).
Principals A, B, C, etc. can stand for user ids like admin , fp, or hemant Proposi-
tions include atomic propositions, conjunction, implication, quantifiers, and other
connectives as we need them.

As an example, we use the Grey [Bauer et al., 2005] system that is used to control
access to offices in Cylab at CMU. There is an administrator (principal admin) that
sets policies, and individual professors and students identified by their Andrew
id. There are also resources, like offices and conference rooms. Among the atomic
propositions are the following:

• mayOpen(A,R). Principal A may open room R.

• owns(A,R). Principal A owns office R.

• studentOf(B,A). Principal B is a student of A.

Here are some examples. The administrator may say that fp owns ghc6017 .

admin says owns(fp, ghc6017)

This is a basic affirmation. A general rule could state that the owner of a room may
open it.

admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R))

An even more complex policy component would be that any student of the owner
of an office, may also open the office. The twist here is that the studentOf relation-
ship should be affirmed by the owner, rather than the administrator.

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.3

admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R))

The scope of fp says here is intended to be only the studentOf proposition. When
the scope is larger, we enclose it in parentheses. We can combine this policy with
the affirmation by fp that hemant is his student:

fp says studentOf(hemant , fp)

Under this policy hemant should be able to access ghc6017 . We can formulate the
question whether this is allowed as a sequent in authorization logic, with the policy
as antecedents (assumptions) and the query as the succedent. In this particular
situation, we would try to prove the sequent

(1) : admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R)),
(2) : admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R)),

(3) : admin says owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin says mayOpen(hemant , ghc6017)

Here, we have labeled the assumptions so we can reference them in the proof.
Reasoning entirely intuitively (to be formalized later in the lecture) we can deduce:

(5) : admin says mayOpen(fp, ghc6017) from (1) and (3)
(6) : admin says mayOpen(hemant , ghc6017) from (2), (3), and (4)

The last line (6) is exactly what we are trying to prove. So we have confirmed that
hemant may open my office, according to the policy.

3 Constructive Logic

The Boolean logic of the earlier lectures (including propositional logic and dynamic
logic) are based on a semantics where every formula has one of two truth values: ⊤
or ⊥. This is not a good match for authorization logic, as remarked by Abadi [2003].
The first issue that we may be “agnostic” about a proposition. Any proposition that
is affirmed should be seen as extending what we can deduce, but not be in conflict
with what we know so far. Another example is given by

A says P → (P ∨A says Q)

We can read this: if A affirms P then either P must be true, or A affirms any propo-
sition (including ⊥). If we worked with just two truth values, why would this be
valid? Let’s assume A says P . Now we distinguish two cases for P . If P is true,

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.4

then P ∨ A says Q. If P is false, then ¬P is true. A would affirm any true proposi-
tion, so A says ¬P . But if A says P and A says ¬P , A is mired in a state of internal
contradiction and would have to affirm anything. Not good.

In order to avoid these kind of paradoxes, we use an intutionistic logic as the
basis for reasoning. Intuitionistic logic does not allow us to reason with the law
of excluded middle, or to prove P by assuming ¬P and deriving a contradic-
tion (using an indirect proof). Instead, we want the reason access to a resource
is granted to be as clear and direct as possible, which is what intuitionistic logic
provides. Actually, we go a step further and rule out negation ¬P and falsehood
⊥ entirely, because it is easy to make intuitively meaningful statements that are
wrong. For example, principal fp does not want hemant to access his office. Stating
fp says ¬mayOpen(hemant , ghc6017) turns out to be the wrong way to say this. Be-
cause if the rest of the policy says that mayOpen(hemant , ghc6017) then suddenly
fp affirms everything, including that every principal in the system may access his
office—clearly not the desired effect.

This change in perspective, from two-valued Boolean logic (also called classical
logic) to a richer intuitionstic logic has two consequences, one semantic and one
syntactic. Semantically, we need to generalize to a so-called Kripke semantics where
we consider multiple worlds in which different propositions may be true. This is
a good match for a logic of authorization since at the very least each principal
defines a world, and different principals will affirm different propositions. For such
a semantics, see, for example, Garg [2008]. Syntactically, it is surprisingly simple:
we restrict the succedent of a sequent to be exactly one formula. We therefore write
Γ ⊢ δ. That this actually works was one of Gentzen’s [1935] profound insights.

We actually make the lack of a mathematical semantics a philosophical princi-
ple. We think of the meanings of formulas as given by their possible derivations in
the sequent calculus. In other words, the right and left rules of the sequent calculus
themselves define the meaning of each logical constant, connective, and modality.
In the context of authorization, this can be justified since it is ultimately a formal
proof that is used to claim and check authorization—we don’t appeal to an external
semantics. For a fuller development of this viewpoint, see, for example, Dummett
[1991] and Martin-Löf [1983].

As we will in particular see in the next lecture, the properties of the logic change
in fundamental ways when we restrict the succedents to be just a single formula.

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.5

The rules we get otherwise just reflect the earlier ones.

Γ, P ⊢ P
id

Γ, P ⊢ Q

Γ ⊢ P →Q
→R

Γ ⊢ P Γ, Q ⊢ δ

Γ, P →Q ⊢ δ
→L

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧Q
∧R

Γ, P,Q ⊢ δ

Γ, P ∧Q ⊢ δ
∧L

Γ ⊢ P (y) y ̸∈ (Γ, ∀x. P (x))

Γ ⊢ ∀x. P (x)
∀Ry

Γ, P (c) ⊢ δ

Γ, ∀x. P (x) ⊢ δ
∀L

Γ ⊢ P

Γ ⊢ P ∨Q
∨R1

Γ ⊢ Q

Γ ⊢ P ∨Q
∨R2

Γ, P ⊢ δ Γ, Q ⊢ δ

Γ, P ∨Q ⊢ δ
∨L

For the quantifiers, recall our convention of writing P (x) and then P (c) for the
result of substituting c for x in P (x). Quantification was previously over integers,
but here we think of principals, rooms, etc. c could also be a variable y that was
introduced by a ∀R rule.

The most immediate effect of reasoning intuitionistically is perhaps on disjunc-
tion. We can no longer prove, for example p ∨ (p → q) because we have to decide
between one of the disjuncts instead of carrying both as succedents.

In these rules there is a main formula among the antecedents to which a left
rule is applied. This formula may be needed again so it can be kept among the
antecedents if so desired. This is particularly useful for ∀L. To anticipate a bit the
next lecture, it is no longer the case that all rules are invertible, the way it is in
Boolean propositional logic. So proof search is significantly more difficult than in
Boolean logic, and not just because of the quantifiers.

4 Affirmations

We haven’t yet discussed A says P , the central modality of authorization logic.
The key insight is that when we try to prove Γ ⊢ A says P we need to proceed
with our reasoning from the perspective of principal A. But what does this mean?
First, principal A should be willing to affirm any proposition that is true. Second,
anything that A says is also available to reason with. On the other hand, if B says Q

is in Γ for some B ̸= A, the proposition Q is not available to A: this is something
that B affirms, but not necessarily A.

Formalizing this reasoning is not entirely straightforward, and there are differ-
ent approaches. The one we choose is due to Garg and Pfenning [2006], primarily
due to it simplicity. We distinguish a succedent expressing that a proposition is

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.6

true (written P true) and another that A affirms a proposition P (written A aff P).
We often omit the “true” notation, but always write A aff P to use an affirmation.
Formally:

Succedent δ ::= P true | A aff P

The first rule says that in order to prove that A says P is true, we need to prove
that A affirms P .

Γ ⊢ A aff P

Γ ⊢ (A says P) true
saysR

This may seem redundant, but it exposes the principal A and the proposition P .
It is similar to the rule →R, where the implication P → Q is turned into P ⊢ Q,
opening up P and Q to further inferences.

The next rule expresses that if P is true, then A is willing to affirm that.

Γ ⊢ P true

Γ ⊢ A aff P
aff

This rule is like “peeling an onion”, moving entirely now into A’s head, reasoning
from their perspective.

The left rule for A says P jumps directly to P , both of which are propositions
and therefore can appear among the antecedents. But we can make this transition
only if we are currently reasoning from A’s perspective, that is, if the succedent is
A aff Q for some Q.

Γ, P ⊢ A aff Q

Γ, A says P ⊢ A aff Q
saysL

5 Some Axioms

Before we go back to our motivating example, we can analyze some of the proper-
ties of affirmations.

⊢ P →A says P

As we have said, any principal (here A) is willing to affirm any true proposition
(here P), so we should be able to prove this. As usual, we build the proof bottom-
up; we show here only the result.

P ⊢ P
id

P ⊢ A aff P
aff

P ⊢ A says P
saysR

· ⊢ P →A says P
→R

The implication in the other direction should not be valid: just because A says P

that doesn’t mean P is actually true. We show that it is not derivable.

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.7

̸⊢ (A says p)→ p

XXX
A says p ⊢ p

· ⊢ (A says p)→ p
→R

As a first step, only →R is applicable; for the second no rule is.
We can also “distribute” A says over an implication. This captures that if A

affirms P →Q and P , then it also affirms Q.

⊢ A says (P →Q)→ (A says P →A says Q)

P ⊢ P
id

Q ⊢ Q
id

P →Q,P ⊢ Q
→L

P →Q,P ⊢ A aff Q
aff

A says (P →Q), A says P ⊢ A aff Q
saysL× 2

A says (P →Q), A says P ⊢ A says Q
saysR

⊢ A says (P →Q)→ (A says P →A says Q)
→R× 2

Iterating A says twice is the same as just affirming just once.

⊢ A says (A says P)→A says P

P ⊢ P
id

P ⊢ A aff P
aff

A says P ⊢ A aff P
saysL

A says (A says P) ⊢ A aff P
saysL

A says (A says P) ⊢ A says P
saysR

⊢ A says (A says P)→A says P
→R

The other direction of this implication is an instance of the first axiom. On the other
hand, for different principals A and B we cannot prove

̸⊢ A says p→B says p

These axioms (together with those for intuitionistic logic) are complete for impli-
cation and affirmation and identify this as a generalization of lax logic [Fairtlough
and Mendler, 1997]. Instead of a single modality ⃝P we have a whole family of

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.8

such modalities, indexed by principals. From the perspective of functional pro-
gramming, each modality “A says −” is a strong monad [Moggi, 1989, Wadler,
1992]. Here, it relativizes reasoning to each principal; in functional programming
monads can isolate the pure part of the language from effects. The connection to
modal logics is further explored by Pfenning and Davies [2001]. A summary of the
axioms is in Figure 1.

⊢ P →A says P

⊢ A says (P →Q)→ (A says P →A says Q)
⊢ A says (A says P)→A says P

̸⊢ (A says p)→ p

Figure 1: Axioms for Authorization Logic

6 An Example of Authorization

We return to our motivating example, where we have labeled each of the antecedents
as before.

(1) : admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R)),
(2) : admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R)),

(3) : admin says owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin says mayOpen(hemant , ghc6017)

We highlighted in blue the focus of the next inference. Using saysR, we reduce this
in one step to proving the sequent

(1) : admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R)),
(2) : admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R)),

(3) : admin says owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin aff mayOpen(hemant , ghc6017)

This unlocks the affirmations by admin among the antecedents, so applying saysL

three times we get

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.9

(1)′ : ∀A. ∀R. owns(A,R)→mayOpen(A,R),
(2)′ : ∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R),

(3)′ : owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin aff mayOpen(hemant , ghc6017)

Note that fp’s affirmation cannot be unlocked, since admin ̸= fp. Now we can
apply ∀L three times, instantiating A, B, and C with fp, hemant , and ghc6017 ,
respectively.

(1)′ : ∀A. ∀R. owns(A,R)→mayOpen(A,R),
(2)′′ : owns(fp, ghc6017) ∧ fp says studentOf(hemant , fp)→mayOpen(hemant , ghc6017),

(3)′ : owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin aff mayOpen(hemant , ghc6017)

At this point we can apply →L to the antecedent (2)′′, proving the conjunction by
(3)′ and (4) and obtaining the new line (5).

(1)′ : ∀A. ∀R. owns(A,R)→mayOpen(A,R),
(2)′′ : owns(fp, ghc6017) ∧ fp says studentOf(hemant , fp)→mayOpen(hemant , ghc6017),

(3)′ : owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)
(5) : mayOpen(hemant , ghc6017)

⊢

admin aff mayOpen(hemant , ghc6017)

Now we can apply the rule of affirmation, followed by the identity to complete the
proof.

7 Summary

Principals A,B,C

Formulas P,Q ::= p | P ∧Q | P →Q | P ∨Q | ∀x. P (x) | A says P

Succedents δ ::= P true | A aff P

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.10

Γ, P ⊢ P true
id

Γ, P ⊢ Q true

Γ ⊢ P →Q true
→R

Γ ⊢ P Γ, Q ⊢ δ

Γ, P →Q ⊢ δ
→L

Γ ⊢ P true Γ ⊢ Q true

Γ ⊢ P ∧Q true
∧R

Γ, P,Q ⊢ δ

Γ, P ∧Q ⊢ δ
∧L

Γ ⊢ P (y) true y ̸∈ (Γ, ∀x. P (x))

Γ ⊢ ∀x. P (x) true
∀Ry

Γ, P (c) ⊢ δ

Γ, ∀x. P (x) ⊢ δ
∀L

Γ ⊢ P true

Γ ⊢ P ∨Q true
∨R1

Γ ⊢ Q true

Γ ⊢ P ∨Q true
∨R2

Γ, P ⊢ δ Γ, Q ⊢ δ

Γ, P ∨Q ⊢ δ
∨L

Γ ⊢ A aff P

Γ ⊢ (A says P) true
saysR

Γ, P ⊢ A aff Q

Γ, A says P ⊢ A aff Q
saysL

Γ ⊢ P true

Γ ⊢ A aff P
aff

Figure 2: Affirmation Logic

References

Martı́n Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium
on Logic in Computer Science (LICS’03), pages 228–233, Ottawa, Canada, June 2003.
IEEE Computer Society Press.

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and
Peter Rutenbar. Device-enabled authorization in the Grey system. In Proceed-
ings of the 8th Information Security Conference (ISC’05), pages 431–445, Singapore,
September 2005. Springer Verlag LNCS 3650.

Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with
explicit time. Technical Report CMU-CS-07-166, Carnegie Mellon University, De-
partment of Computer Science, December 2007. Revised February 2008.

LECTURE NOTES OCTOBER 29, 2024

Authorization Logic L15.11

Michael Dummett. The Logical Basis of Metaphysics. Harvard University Press, Cam-
bridge, Massachusetts, 1991. The William James Lectures, 1976.

M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Computa-
tion, 137(1):1–33, August 1997.

Deepak Garg. Principal-centric reasoning in constructive authorization logic. In
Workshop on Intuitionistic Modal Logic and Applications (IMLA’08), July 2008. Ex-
tended and revised version available as Technical Report CMU-CS-09-120, April
2009.

Deepak Garg. Proof Theory for Authorization Logic and Its Application to a Practical
File System. PhD thesis, Carnegie Mellon University, December 2009. Available
as Technical Report CMU-CS-09-168.

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization
logic. In J. Guttman, editor, Proceedings of the 19th Computer Security Foundations
Workshop (CSFW’06), pages 283–293, Venice, Italy, July 2006. IEEE Computer So-
ciety Press.

Deepak Garg and Frank Pfenning. A proof-carrying file system. In D.Evans and
G.Vigna, editors, Proceedings of the 31st Symposium on Security and Privacy (Oak-
land 2010), pages 349–364, Berkeley, California, May 2010. IEEE. Extended ver-
sion available as Technical Report CMU-CS-09-123, June 2009.

Deepak Garg, Frank Pfenning, Denis Serenyi, and Brian Witten. A logical represen-
tation of common rule for controlling access to classified information. Technical
Report CMU-CS-09-139, Carnegie Mellon University, June 2009.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Notes for three lectures given in
Siena, Italy. Published in Nordic Journal of Philosophical Logic, 1(1):11-60,
1996, April 1983. URL http://www.hf.uio.no/ifikk/forskning/

publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf.

Eugenio Moggi. Computational lambda calculus and monads. In Proceedings of the
Fourth Symposium on Logic in Computer Science, pages 14–23, Asilomar, California,
June 1989. IEEE Computer Society Press.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001. Notes to an in-
vited talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

LECTURE NOTES OCTOBER 29, 2024

http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf

Authorization Logic L15.12

Philip Wadler. The essence of functional programming. In Conference Record of
the 19th Symposium on Principles of Programming Languages, pages 1–14, Albu-
querque, January 1992. ACM Press.

LECTURE NOTES OCTOBER 29, 2024

Lecture Notes on

Proof Search in Authorization Logic

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 16
October 31, 2024

1 Introduction

In Boolean logic, the sequent calculus was a good basis for proof search (at least
on the small scale) because all rules were sound and invertible. This is no longer
the case for intuitionistic logic, whether extended with affirmation or not. In fact,
Boolean propositional logic is just about the only logic where we can arrange for
all rules to be invertible. Our task then is to find out which rules are invertible
and which are not. This gives rise to a classification of logical connectives based
on the invertibility of their right and left rules. This can be done generally for
logics that admit a sequent calculus formulation. It was first discovered for linear
logic [Girard, 1987] by Andreoli [1992] but since been applied to many other ones,
including those with a lax modality [Liang and Miller, 2009, Watkins et al., 2002].

Our first order of business, then, is to identify invertibility properties, followed
by proof strategies based on them.

2 Inversion

Since it is a pervasively used connective, we start with implication.

Γ, P ⊢ Q

Γ ⊢ P →Q
→R

invertible

Γ ⊢ P Γ, Q ⊢ δ

Γ, P →Q ⊢ δ
→L

not invertible

It turns out the right rule is invertible, while the left rule is not. To see that the left
rule is not invertible, we only need a counterexample. Consider

p→ q, q → r ⊢ p→ r

LECTURE NOTES OCTOBER 31, 2024

Proof Search in Authorization Logic L16.2

Trying to apply the left rule for implication to the first antecedent results in a se-
quent that cannot be derived.

XXX
· ⊢ q

XXX
r ⊢ p

q → r ⊢ p
→L

...
q, q → r ⊢ p→ r

p→ q, q → r ⊢ p→ r
→L

We suspect that the right rule for implication is invertible, but how do we prove it?
Previously, we used a semantic argument, using the validity of a sequent. Here, such
a direct argument is not available—we would have to introduce a semantics which
is not straightforward. But there is also a syntactic technique, using the admissibility
of cut. So we make a brief detour to introduce it.

When presented as a rule

Γ ⊢ P Γ, P ⊢ δ

Γ ⊢ δ
cut

its meaning is clear: if we can prove P we are allowed to assume it in further
reasoning. For bottom-up proof search it is somewhat problematic because we
have to determine a useful P , which could be any formula. So we use it only under
controlled circumstances.

Gentzen [1935] showed that the rule of cut is redundant for both classical (Boolean)
and intuitionistic logic. What do we mean by “redundant”? More technically, we
call a rule admissible if it is both sound and whenever the premises can be derived,
so can the conclusion without using the rule. We write an admissible rule with a
dashed line:

Γ ⊢ P Γ, P ⊢ δ

Γ ⊢ δ
cut

We won’t go into detail how to show that cut is admissible. This is covered in many
articles (including Gentzen’s original one) and also in 15-317 Constructive Logic in
somewhat more modern notation (see Lecture 8).

Here we concentrate on how to use the admissibility of cut to obtain other prop-
erties. First, it is convenient to have an alternative version that is also admissible
and more suitable to top-down reasoning.

Γ1 ⊢ P Γ2, P ⊢ δ

Γ1,Γ2 ⊢ δ
cut′

We want to prove that →R is invertible. That is, we want to show that

Γ ⊢ P →Q

Γ, P ⊢ Q
→R−1

LECTURE NOTES OCTOBER 31, 2024

https://www.cs.cmu.edu/~fp/courses/15317-s23/lectures/08-cutelim.pdf

Proof Search in Authorization Logic L16.3

is admissible. Step-by-step: first, we have a succedent P →Q in the premise, so we
should try to cut it with a sequent with antecedent P →Q with some Γ′ and δ.

Γ ⊢ P →Q

...

Γ′, P →Q ⊢ δ

Γ, P ⊢ Q
cut′

What could we choose for Γ′ and δ? It is pretty obvious from the conclusion: Γ′ = P

and δ = Q. We can then complete the derivation of the second premise.

Γ ⊢ P →Q

P ⊢ P
id

Q ⊢ Q
id

P, P →Q ⊢ Q
→L

Γ, P ⊢ Q
cut′

We see in the second premise everything is proved, so this derivation shows that
→R−1 is admissible.

We can prove other rules invertible as well, with clever uses of cut′. On our
fragment (excluding affirmation for now), the invertible rules are ∧R, ∧L, ∨L, ∀R.
The noninvertible rules are →L, ∨R1, ∨R2, and ∀L.

A first simple strategy emerges: apply all the invertible rules in some arbitrary,
unspecified order until we reach a sequent where either identity applies, or we
have to make a choice between noninvertible rules. This choice typically then re-
quires backtracking, in case we make a wrong choice.

We can express such a strategy with three judgment forms, two that force only
invertible rules to be used on the left or right, and one that requires a choice. Since
it is not our ultimate destination, we elide this here and refer the interest reader to
Lecture 15 of the course on constructive logic.

3 Inversion for Affirmation

An empirical observation is that if the right rule for a connective is invertible then
the left rule is not and vice versa. This is apparently violated by conjunction which
is invertible on both sides. This is because there are actually two forms of con-
junction hiding under the symbol “∧” that are indistinguishable with respect to
provability.

We call connectives whose right rule is invertible negative connectives and the
ones whole left rule is invertible are positive connectives. The inversion phase of
proof search then applies negative right rules and positive left rules.

But what about affirmation? There is something rather strange going on be-
cause in the right rule we go from (A says P) true to A aff P and in the left rule
we jump directly from A says P to P . It turns out that the affirmation modality

LECTURE NOTES OCTOBER 31, 2024

https://www.cs.cmu.edu/~fp/courses/15317-s23/lectures/15-inversion.pdf
https://www.cs.cmu.edu/~fp/courses/15317-s23

Proof Search in Authorization Logic L16.4

signifies a change in polarity. One way to state that is that A says P is negative,
but the judgment underneath, A aff P is positive. That means, the right rule is
invertible, but the rule of affirmation is not.

Γ ⊢ A aff P

Γ ⊢ (A says P) true
saysR

invertible

Γ ⊢ P true

Γ ⊢ A aff P
aff

not invertible

As for the left rules, because A says P is negative, it’s left rules is not invertible.
However, if the succedent has the form A aff Q we can always apply the rule since
P is a stronger assumption than A says P . So we put “invertible” in quotation: we
can apply the rule when possible, but we cannot always apply it when A says P is
an antecedent.

Γ, P ⊢ A aff Q

Γ, A says P ⊢ A aff Q
saysL

“invertible”

Now we also see why A aff P does not appear as a judgment among the an-
tecedents: it is positive, and therefore the corresponding rule can be applied imme-
diately and the stepping stone be omitted.

Γ, P ⊢ A aff Q

Γ, “A aff P” ⊢ A aff Q

Γ, A says P ⊢ A aff Q
saysL

4 Focusing

If we look at the example from the last lecture we see that the only invertible step
is the right rule for says, followed by stripping the “admin says ” prefix from (1),
(2), and (3) using saysL.

(1) : admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R)),
(2) : admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R)),

(3) : admin says owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin says mayOpen(hemant , ghc6017)

LECTURE NOTES OCTOBER 31, 2024

Proof Search in Authorization Logic L16.5

The resulting sequent below has no invertible rule we can blindly apply.

(1)′ : ∀A. ∀R. owns(A,R)→mayOpen(A,R),
(2)′ : ∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R),

(3)′ : owns(fp, ghc6017),
(4) : fp says studentOf(hemant , fp)

⊢

admin aff mayOpen(hemant , ghc6017)

For example, we could instantiate the quantifier ∀A in (1)′. But still, everything
remains negative and we could instantiate either the ∀R we have uncovered or the
∀A quantifier in (2). We see that at every step we have to choose between a number
of alternatives. This can lead to a lot of backtracking if the choices are incorrect.

Focusing [Andreoli, 1992] is the idea that we can pick a negative antecedent or
a positive succedent and continue to apply noninvertible rules to this particular
formula until we reach either an atomic formula or the polarity switches. For ex-
ample, if we guess (2)′ we would apply ∀L three times, followed by →L. Let’s treat
conjunction as positive, which we continue with that as well and succeed when we
find the needed assumptions.1 All that reasoning adds mayOpen(hemant , ghc6017)
to the assumptions and we have to make another choice. At this point we want to
choose the rule of affirmation followed by the identity to complete the proof.

We don’t write out the sequent calculus for focusing in its most general form,
but you may refer to Lecture 17 of the constructive logic course notes for details.
We write Γ, [P] ⊢ δ for a formula P in left focus and Γ ⊢ [Q] for a formula in right
focus. In this kind of sequent just one formula can be in focus, and rules can be
applied only to the formula in focus. The rules with no focus are the invertible
rules.

This gives us the following rules. We work with following polarities below.
Except for atoms and conjunction (which we choose to be positive), they are deter-
mined by the inversion properties of the connectives.

Negative P−, Q− ::= P →Q | ∀x. P (x) | A says P

Positive P+, Q+ ::= p | P ∧Q | P ∨Q

First the rules to initiate a phase of focusing.

Γ ⊢ [Q+]

Γ ⊢ Q+
focusR

P− ∈ Γ Γ, [P−] ⊢ δ

Γ ⊢ δ
focusL

In the left rule we focus on a copy of P− because we may need this formula again.
In the examples we sometimes drop the extra copy if we anticipate (or know) it will
not be needed again.

1Actually, not quite. The affirmation “fp says” forces us to stop and make another explicit choice.

LECTURE NOTES OCTOBER 31, 2024

https://www.cs.cmu.edu/~fp/courses/15317-s23/lectures/17-focusing.pdf

Proof Search in Authorization Logic L16.6

The rule for affirmation is an additional transition rule. Next, the logical rules.
For brevity, we mostly omit “true” in the succedent if it is just a formula. The
judgment Γ ⊢ δ, Γ, [P] ⊢ δ and Γ ⊢ [Q] are mutually exclusive, that is, there may be
no focused formula in Γ or δ.

Γ, p ⊢ [p]
id

Γ, P ⊢ Q

Γ ⊢ P →Q
→R

Γ ⊢ [P] Γ, [Q] ⊢ δ

Γ, [P →Q] ⊢ δ
→L

Γ ⊢ [P] Γ ⊢ [Q]

Γ ⊢ [P ∧Q]
∧R

Γ, P,Q ⊢ δ

Γ, P ∧Q ⊢ δ
∧L

Γ ⊢ P (y) y ̸∈ Γ, P (x)

Γ ⊢ ∀x. P (x)
∀Ry

Γ, [P (c)] ⊢ δ

Γ, [∀x. P (x)] ⊢ δ
∀L

Γ ⊢ [P]

Γ ⊢ [P ∨Q]
∨R1

Γ ⊢ [Q]

Γ ⊢ [P ∨Q]
∨R2

Γ, P ⊢ δ Γ, Q ⊢ δ

Γ, P ∨Q ⊢ δ
∨L

Next, the rules to complete a focusing phase (still postponing affirmations). We say
that we blur the focus.

Γ, P+ ⊢ δ

Γ, [P+] ⊢ δ
blurL

Γ ⊢ Q−

Γ ⊢ [Q−]
blurR

Finally, the rules for affirmation. They incorporate some phase transitions because
of the polarity shift intrinsic to the modality.

Γ ⊢ A aff P

Γ ⊢ (A says P) true
saysR

Γ, P ⊢ A aff Q

Γ, [A says P] ⊢ A aff Q
saysL

Γ ⊢ [P] true

Γ ⊢ A aff P
aff

Our motivating example is too lengthy to write out formally with these rules
for focusing, but we can try a small example and see how focusing reduces nonde-
terminism. Consider

p→ q, p→ (q → r) ⊢ p→ r

After the obligatory right inversion, we arrive at

p, p→ q, p→ (q → r) ⊢ r

LECTURE NOTES OCTOBER 31, 2024

Proof Search in Authorization Logic L16.7

In this situation, we could in principle try to focus on p→q, on p→(q→r) or r. Let’s
try right focus first. We immediately fail because r is not among the antecedents.

XXX
p, p→ q, p→ (q → r) ⊢ [r]

p, p→ q, p→ (q → r) ⊢ r
focusR

Next we try to focus on p→ (q → r).

p, p→ q ⊢ [p]
id

XXX
p, p→ q ⊢ [q]

...

p, p→ q, [r] ⊢ r

p, p→ q, [q → r] ⊢ r
→L

p, p→ q, [p→ (q → r)] ⊢ r
→L

p, p→ q, p→ (q → r) ⊢ r
focusL

Note that after we decided which antecedent to focus on, everything was deter-
mined. We fail, because q is not among the antecedents.

We cannot focus on p on the left because it is positive, but we can try one final
option, namely to focus on p→ q.

p, p→ (q → r) ⊢ [p]
id

...

p, q, p→ (q → r) ⊢ r

p, [q], p→ (q → r) ⊢ r
blurL

p, [p→ q], p→ (q → r) ⊢ r
→L

p, p→ q, p→ (q → r) ⊢ r
focusL

Now it is possible to focus on p → (q → r) because both p and q are among the
antecedents. This will add r to the antecedents and we can finally successfully
focus on the succedent.

Remarkably, with focusing there is just a single proof (assuming we don’t copy
the formula in focus).

Using inversion and focusing is sound and complete with respect to the sequent
calculus. Soundness is important

Theorem 1 (Soundness and Completeness of Inversion and Focusing) Γ ⊢ δ in
the sequent calculus if and only if Γ ⊢ δ in the calculus with inversion and focusing.

Proof: Soundness is straightforward, since we only restrict the application of cer-
tain rules.

The proof of completeness is quite complex, and not just because of affirma-
tions. See Liang and Miller [2009] for a blueprint that can be adapted to this autho-
rization logic. □

LECTURE NOTES OCTOBER 31, 2024

Proof Search in Authorization Logic L16.8

In the architecture of proof-carrying authorization we have to contend with the
fact that more complex policies engender more difficult theorem proving problems.
In the next lecture we will identify a fragment of authorization logic that represents
a reasonable compromise between expressiveness and difficulty of proving. It is
inspired by Horn clauses, but goes beyond it due the presence of affirmations.

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):197–347, 1992.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, November
2009.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent
logical framework I: Judgments and properties. Technical Report CMU-CS-02-
101, Department of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

LECTURE NOTES OCTOBER 31, 2024

Lecture Notes on

Proof Representation

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Lecture 17
November 5, 2024

1 Introduction

The picture below illustrates the general proof-carrying architecture we have con-
sidered in the last two lectures.

user resource monitor

policy

challenge

proof

In this particular use of authorization logic, the user bears the burden of proof.
If the policy is not particularly complex, the resource monitor itself could construct
a proof instead, either explicitly or implicitly via an implementation that has been
proved correct against the policy.

One advantage of this architecture is that new affirmations can enter the picture
dynamically. For example, when myra stands in front of my office she might con-
tact me to obtain an affirmation from me that she is my student and can therefore
enter it. Such an affirmation would come in the form of a signed certificate, which
we will discuss in the next lecture.

If we stick to the architecture as depicted, it is the user’s responsibility to pro-
duce a proof of the challenge formula and the resource monitor’s responsibility
to check the proof it received. In the last lecture we talked about some strategies

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.2

for finding proofs; today we’ll talk about how to represent them so they can be
communicated to the resource monitor and then checked.

The mainstay of the whole idea is that the policy expresses the intended autho-
rization policy in a straightforward and understandable way.

2 Proof Terms for Intuitionistic Propositional Logic

We start with the proof terms for propositional logic. The basic idea is to annotate
a sequent

P1, . . . , Pn ⊢ Q

with proof terms Mi and N such that

M1 : P1, . . . ,Mn : Pn ⊢ N : Q

The initial sequent we try to prove has the form

c1 : P1, . . . , cn : Pn ⊢ ? : Q

where ci are signed certificates that serve as justifications for the antecedents. As we
proceed with the proof, we may create additional antecedents M : P and even-
tually justify the conclusion with a proof term N : Q. The term N should have
enough information to check that the initial sequent has a proof.

For the remainder of this lecture, we will use Γ to also stand for a sequent where
each antecedent has a suitable justification.

Conjunction. We start with conjunction:

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧Q
∧R

Γ, P,Q ⊢ δ

Γ, P ∧Q ⊢ δ
∧L

We see that the justification for P ∧Q should be a pair, consisting of a justification
for P and one for Q.

Γ ⊢ M : P Γ ⊢ N : Q

Γ ⊢ ⟨M,N⟩ : P ∧Q
∧R

To check that ⟨M,N⟩ is a proof of P ∧Q we just need to check that M is a proof of
P and N is a proof of Q.

How does the left rule work? Assume that M is a justification for P ∧ Q. That
means that M represents a pair, and its first component should be a proof of P and
its second component a proof of Q.

Γ,M.π1 : P,M.π2 : Q ⊢ N : δ

Γ,M : P ∧Q ⊢ N : δ
∧L

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.3

Identity. Let’s complete this first analysis with the identity rule. Because all an-
tecedents have a justification, we just use that as our justification of the (identical)
succedent.

Γ, P ⊢ P
id

Γ,M : P ⊢ M : P
id

At this point we can already write out a small example.

P,Q ⊢ Q
id

P,Q ⊢ P
id

P,Q ⊢ Q ∧ P
∧R

P ∧Q ⊢ Q ∧ P
∧L

We now annotate this in several steps, leaving question marks where information
is still to be filled in

? : P, ? : Q ⊢ ? : Q
id

? : P, ? : Q ⊢ ? : P
id

? : P, ? : Q ⊢ ? : Q ∧ P
∧R

x : P ∧Q ⊢ ? : Q ∧ P
∧L

Here, x is the initial justification for the antecedent P ∧Q which could be a signed
certificate, or perhaps a variable that can come from somewhere else. From it, we
can construct the justifications for P and Q by projection. These then also flow
upward in the derivation.

x.π1 : P, x.π2 : Q ⊢ ? : Q
id

x.π1 : P, x.π2 : Q ⊢ ? : P
id

x.π1 : P, x.π2 : Q ⊢ ? : Q ∧ P
∧R

x : P ∧Q ⊢ ? : Q ∧ P
∧L

Now we can copy over the justifications for P and Q in the two applications of
identity.

x.π1 : P, x.π2 : Q ⊢ x.π2 : Q
id

x.π1 : P, x.π2 : Q ⊢ x.π1 : P
id

x.π1 : P, x.π2 : Q ⊢ ? : Q ∧ P
∧R

x : P ∧Q ⊢ ? : Q ∧ P
∧L

Now we can fill in the proof term for Q ∧ P and propagate it down the derivation.

x.π1 : P, x.π2 : Q ⊢ x.π2 : Q
id

x.π1 : P, x.π2 : Q ⊢ x.π1 : P
id

x.π1 : P, x.π2 : Q ⊢ ⟨x.π2, x.π1⟩ : Q ∧ P
∧R

x : P ∧Q ⊢ ⟨x.π2, x.π1⟩ : Q ∧ P
∧L

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.4

Already here we might anticipate something that holds on a larger scale. Namely,
the proof looks like a piece of code that reverses the elements of a pair. So the
term representing a proof is like a program, and the proposition is like its type. We
can only scratch the surface of that connection, common called the Curry-Howard
Isomorphism [Curry, 1934, Howard, 1969]. The CMU course on Constructive Logic
investigates this connection in depth.

Implication. The intuitionistic reading of P →Q is as a function from proofs of P
to proofs of Q.

Γ, P ⊢ Q

Γ ⊢ P →Q
→R

Γ ⊢ P Γ, Q ⊢ δ

Γ, P →Q ⊢ δ
→L

Then the proof term for a right rule is a function.

Γ, x : P ⊢ N : Q

Γ ⊢ (λx.N) : P →Q
→R

This notation goes back to Church’s λ-calculus [Church and Rosser, 1936] and
may be written in concrete syntax as fn x => N (Standard ML) or fun x -> N

(OCaml) or \x -> N (Haskell).
The left rule represents function application, written as juxtaposition N M .

Γ ⊢ M : P Γ, N M : Q ⊢ O : δ

Γ, N : P →Q ⊢ O : δ
→L

Just like for ∧L, the succedent does not change in this rule.
To resume our example: we can finish with an →R rule.

x.π1 : P, x.π2 : Q ⊢ x.π2 : Q
id

x.π1 : P, x.π2 : Q ⊢ x.π1 : P
id

x.π1 : P, x.π2 : Q ⊢ ⟨x.π2, x.π1⟩ : Q ∧ P
∧R

x : P ∧Q ⊢ ⟨x.π2, x.π1⟩ : Q ∧ P
∧L

⊢ λx. ⟨x.π2, x.π1⟩ : P ∧Q→Q ∧ P
→R

Recall that the left rule for implication is not invertible. This means we actually
may need the antecedent P →Q (or, annotated, N : P →Q) again in the proof. We
don’t explicitly reflect this in →L, or in left rules in general. Instead, by convention,
the antecedent we apply a left rule to may be kept or discarded in the premises. If
one wants to build a theorem prover that is complete, a detailed analysis of whether
antecedents may be discarded would be indicated.

LECTURE NOTES NOVEMBER 5, 2024

https://www.cs.cmu.edu/~fp/courses/15836-f23/

Proof Representation L17.5

Universal Quantification. Intuitionistically, a proof of ∀x. P (x) also represents
a function. It takes as argument an element c from the domain of quantification
and returns a proof of P (c). Inside a proof, this element c could also be a variable
denoting a constant.

Γ ⊢ P (y) y ̸∈ (Γ, ∀x. P (x))

Γ ⊢ ∀x. P (x)
∀Ry

Γ, P (c) ⊢ δ

Γ, ∀x. P (x) ⊢ δ
∀L

Since it also is a function, we reuse the same notation as for implication. The context
of use will provide enough information to disambiguate.

Γ ⊢ M(y) : P (y) y ̸∈ (Γ, ∀x. P (x))

Γ ⊢ (λx.M(x)) : ∀x. P (x)
∀Ry

Γ,M c : P (c) ⊢ N : δ

Γ,M : ∀x. P (x) ⊢ N : δ
∀L

Cut. The cut rule introduces a lemma into a proof. With terms, this means we
introduce a name for a possibly complex term.

Γ ⊢ P Γ, P ⊢ δ

Γ ⊢ δ
cut

Γ ⊢ M : P Γ, x : P ⊢ N : Q

Γ ⊢ let x = M in N : Q
cut

There is a potential issue with checking applications of cut since the conclusion
(and the term let x = M in N) does not contain P . So we might need to add this
to the term. Note that there potentially is another rule for a succedent A aff Q.

Disjunction. We omit the proof terms for disjunction since our application ulti-
mately does not use disjunction. In brief, the right rule tags members of a sum
while the left rule represents a program that distinguishes cases.

3 Proof Terms for Affirmations

The complication for the rules of affirmation is that the left rules for principle A are
unlocked for a limited section of the proof. This section needs to be represented
explicitly and we use {M}A to represent this scope.

Γ ⊢ A aff P

Γ ⊢ (A says P) true
saysR

Γ ⊢ M : A aff P

Γ ⊢ {M}A : (A says P) true
saysR

The left rule “strips off” the scoping that may be present in the term M and binds
a fresh variable x within the current scope.

Γ, P ⊢ A aff Q

Γ, A says P ⊢ A aff Q
saysL

Γ, x : P ⊢ N : A aff Q

Γ,M : A says P ⊢ let {x}A = M in N : A aff Q
saysL

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.6

Finally, the rule of affirmation is a judgmental transition (rather than being con-
nected to a particular proposition), so the proof term remains the same.

Γ ⊢ M : P true

Γ ⊢ M : A aff P
aff

Before we go to our motivating example, we work out a relatively simple one.

P ⊢ P
id

Q ⊢ Q
id

P →Q,P ⊢ Q
→L

P →Q,P ⊢ A aff Q
aff

A says (P →Q), A says P ⊢ A aff Q
saysL× 2

A says (P →Q), A says P ⊢ A says Q
saysR

⊢ A says (P →Q)→ (A says P →A says Q)
→R× 2

We start by annotating bottom-up, leaving “unknowns” as question marks.

P ⊢ ? : P
id

Q ⊢ ? : Q
id

P →Q,P ⊢ ? : Q
→L

P →Q,P ⊢ ? : A aff Q
aff

x : A says (P →Q), y : A says P ⊢ ? : A aff Q
saysL× 2

x : A says (P →Q), y : A says P ⊢ ? : A says Q
saysR

⊢ ? : A says (P →Q)→ (A says P →A says Q)
→R× 2

Now we apply the rule of affirmation, which introduces two new antecedents de-
rived from x and y, which we call x′ and y′.

y′ : P ⊢ ? : P
id

? : Q ⊢ ? : Q
id

x′ : P →Q, y′ : P ⊢ ? : Q
→L

x′ : P →Q, y′ : P ⊢ ? : A aff Q
aff

x : A says (P →Q), y : A says P ⊢ ? : A aff Q
saysL× 2

x : A says (P →Q), y : A says P ⊢ ? : A says Q
saysR

⊢ ? : A says (P →Q)→ (A says P →A says Q)
→R× 2

Now we can apply →L and then copy over x′ and y′ in applications of the identity

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.7

and then work our way down, annotating the succedent.

y′ : P ⊢ y′ : P
id

x′ y′ : Q ⊢ x′ y′ : Q
id

x′ : P →Q, y′ : P ⊢ x′ y′ : Q
→L

x′ : P →Q, y′ : P ⊢ x′ y′ : A aff Q
aff

x : A says (P →Q), y : A says P ⊢ ? : A aff Q
saysL× 2

x : A says (P →Q), y : A says P ⊢ ? : A says Q
saysR

⊢ ? : A says (P →Q)→ (A says P →A says Q)
→R× 2

The saysL rules wrap lets around the proof term for the affirmation judgment.

y′ : P ⊢ y′ : P
id

x′ y′ : Q ⊢ x′ y′ : Q
id

x′ : P →Q, y′ : P ⊢ x′ y′ : Q
→L

x′ : P →Q, y′ : P ⊢ x′ y′ : A aff Q
aff

x : A says (P →Q), y : A says P ⊢ let {x′}A = x in let {y′}A = y in x′ y′ : A aff Q
saysL× 2

x : A says (P →Q), y : A says P ⊢ ? : A says Q
saysR

⊢ ? : A says (P →Q)→ (A says P →A says Q)
→R× 2

It remains to wrap the proof to indicate A’s perspective (saysR) and then introduce
two λ-abstractions.

y′ : P ⊢ y′ : P
id

x′ y′ : Q ⊢ x′ y′ : Q
id

x′ : P →Q, y′ : P ⊢ x′ y′ : Q
→L

x′ : P →Q, y′ : P ⊢ x′ y′ : A aff Q
aff

x : A says (P →Q), y : A says P ⊢ let {x′}A = x in let {y′}A = y in x′ y′ : A aff Q
saysL× 2

x : A says (P →Q), y : A says P ⊢ {let {x′}A = x in let {y′}A = y in x′ y′}A : A says Q
saysR

⊢ λx. λy. {let {x′}A = x in let {y′}A = y in x′ y′}A : A says (P →Q)→ (A says P →A says Q)
→R× 2

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.8

4 Example Revisited

Recall the motivating example, where we have labeled the antecedents with ci. We
imagine that in an implementation, they would be signed certificates.

c1 : admin says (∀A. ∀R. owns(A,R)→mayOpen(A,R)),
c2 : admin says (∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R)),

c3 : admin says owns(fp, ghc6017),
c4 : fp says studentOf(hemant , fp)

⊢

?Q0 : admin says mayOpen(hemant , ghc6017)

We have also named the resulting (as yet to be determined) proof term so we can
reference it. First, we apply saysR and then unlock c1, c2, and c3. We arrive at the
sequent

x1 : ∀A. ∀R. owns(A,R)→mayOpen(A,R),
x2 : ∀A. ∀B. ∀R. owns(A,R) ∧ fp says studentOf(B,A)→mayOpen(B,R),

x3 : owns(fp, ghc6017),
c4 : fp says studentOf(hemant , fp)

⊢

?Q1 : admin aff mayOpen(hemant , ghc6017)

and

?Q0 = { let {x1}admin = c1 in

let {x2}admin = c2 in

let {x3}admin = c3 in

?Q1 }admin

Now x2 together with the pair ⟨x3, c4⟩ should complete the proof. But we also need
to instantiate A, B, and R, with fp, hemant , and ghc6017 , respectively, which is a
form of function application.

?Q1 = x2 fp hemant ghc6017 ⟨x3, c4⟩

Substituting this out in the original sequent, we get

?Q0 = { let {x1}admin = c1 in

let {x2}admin = c2 in

let {x3}admin = c3 in

x2 fp hemant ghc6017 ⟨x3, c4⟩ }admin

This proof term can now be communicated to and checked by the resource monitor.

LECTURE NOTES NOVEMBER 5, 2024

Proof Representation L17.9

References

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the
American Mathematical Society, 39(3):472–482, May 1936.

H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Sciences, U.S.A., 20:584–590, 1934.

W. A. Howard. The formulae-as-types notion of construction. Unpublished note.
An annotated version appeared in: To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, 479–490, Academic Press (1980), 1969.

LECTURE NOTES NOVEMBER 5, 2024

Lecture Notes on

Bootstrapping Trust

15-316: Software Foundations of Security & Privacy
Matt Fredrikson*

Lecture 18
November 14, 2024

1 Introduction

When we discussed authorization logic, we briefly touched on the topic of trust.
More specifically, authorization logic is distinguished from other logics that we
have looked at by the A says P construct that represents the fact that principal
A affirms proposition P . We saw how to encode decentralized security policies for
systems using says, so that various entities can define their own access control
rules. The system components that must ultimately either grant or deny access
to resources can decide which principals to trust, and subsequently implement a
policy by only accepting says proclamations from trusted principals.

We illustrated this using the Grey system Bauer et al. [2005], and now we will
see a different example that emphasizes the importance of organized trust when
making policy decisions. You may be familiar with the eduroam service, which
provides members of participating academic institutions with wireless network ac-
cess when they visit another institution. For example, because both CMU and Pitt
are members of eduroam, when you visit the Pitt campus you can join the wireless
SSID eduroam, and provide your Andrew ID and password to use the internet.
The same is true at thousands of other institutions across the world that subscribe
to this service.

If you stop to think about it, this is somewhat remarkable given the scale and
disparity in geography and governance among the institutions. How does Pitt
know that you have entered the valid credentials for your Andrew account, which
is managed by CMU? A naive solution might be to distribute the credentials of all
users at eduroam institutions to all of the institutions. Obviously this will not scale,
so perhaps a decentralized authorization policy is called for. First of all, the service

*with edits by Giselle Reis, Ryan Riley, and Frank Pfenning

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.2

eduroam can delegate the responsibility of deciding who is currently a student to
the various institutions, for example as shown below. We use er to denote the
eduroam principal.

er says ∀x. (cmu says isStudent(x))→ isStudent(x)
er says ∀x. (pitt says isStudent(x))→ isStudent(x)

Then the main policy governing access to the eduroam wireless network allows
every student to access the network.

er says ∀x. isStudent(x)→ canAccess(x)

The wireless access points responsible for providing the service use this policy as
assumptions Γ construct or check a proof of the sequent below when student derek
attempts to use the service.

Γ ⊢ er says canAccess(derek)

For example, suppose that derek attempts to do so. Rather than writing out the
proof in the sequent calculus, we present it in the form of a proof term. In the
proof-carrying authorization architecture, that is what would be communicated to
the access point. More conventionally, it provides a logical justification for grant-
ing access but remains implicit in the code implementing access control for the
network.

c1 : er says ∀x. (cmu says isStudent(x))→ isStudent(x)
c2 : er says ∀x. isStudent(x)→ canAccess(x)

c3 : cmu says isStudent(derek)
⊢
?M : er says canAccess(derek)

?M = {
let {x1}er = c1 in
let {x2}er = c2 in
let x4 = x1 derek c3 in
x2 derek x4

}er

You may want to refresh your understanding of the details from the notes to Lec-
ture 17.

Because the derivation above will be about the same for any user, except for the
details of institution and user names, the endpoint need not recompute or check it
for each login. Access boils down to a trusted institution’s endorsement that the
user is legitimate and eligible for the service, so instead perhaps users’ devices can

LECTURE NOTES NOVEMBER 14, 2024

https://15316-cmu.github.io/2024//lectures/17-proofrep.pdf
https://15316-cmu.github.io/2024//lectures/17-proofrep.pdf

Bootstrapping Trust L18.3

just send evidence of the endorsement directly, or the endpoint can obtain it by
some other means.

But how can the access point be sure that this evidence is authentic? We hinted
in the last lecture that digital signatures utilizing cryptography are a common so-
lution. But the cryptographic techniques that enable digital signatures require keys,
which are either secrets distributed among trustworthy parties, or public objects
that can be reliably associated with individuals or organizations.

For example, cmu could sign and date a certificate stating that derek is currently
a student, perhaps with a timeout to account for Bob’s expected graduation date. It
would do so using its private key, known only to CMU, and the access point would
verify it by checking the signature against cmu’s public key. How does the access
point know that it is using the correct public key? What if someone tricked it into
using a different public key, associated with an attacker’s private key, so that it
would trust statements signed by the attacker as coming from cmu?

We will address this topic today, looking more closely at digital certificates and
Public Key Infrastructure (PKI), which is a distributed mechanism for managing the
trust needed to solve the problems introduced in this example.

2 Digital Certificates & Certificate Authorities

For the rest of this lecture, we will assume that all principals A have a secret key
sk/A and a public key pk/A. Suppose in the context of the running example from
the previous section that the eduroam principal generates the public/private key
pairs for all participating institutions.

Digital signatures. One of the main applications of public/secret key pairs is to
digital signatures, which we have referenced informally before. A digital signature
scheme consists of three algorithms, for generating keys, signing messages, and
verifying signatures, respectively. We will always assume that public/secret key
pairs have been generated correctly by some existing means, so we will not spend
any time discussing the key generation algorithm. It is useful however to look a
bit more closely at the latter two algorithms, signsk/A(m) and verifypk/A(s,m), to
understand how signatures are used to establish trust.

The signing algorithm signsk/A(m) takes as input a secret key sk/A for a prin-
cipal A in addition to a message m, and outputs a signature s. The verification
algorithm verifypk/A(s,m) takes as input a public key pk/A for a principal A, a sig-
nature s, a message m, and outputs either true or false. It should be true if and
only if the signature was produced by calling sign with A’s secret key sk/A, i.e.,
s = signsk/A(m) for some m. Otherwise, verifypk/A(s,m) = false. So in particular
verifypk/A(s,m) will return false if s is a signature created with the secret key of
some other principal B ̸= A, or more formally verifypk/A(signsk/B (m),m) = false

for all m. This is summarized below.

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.4

verifypk/A(s,m) =

{

true if s = signsk/A(m)

false otherwise

Technically speaking, the behavior specified above is only required to hold with
overwhelming probability over the keys produced by the generator [Katz and Lin-
dell, 2014]. For our purposes however, it is fine to think of it as holding uncondi-
tionally.

The essential property established here is unforgeability. As long as sk/A re-
mains a secret, and the only individual who knows the value of sk/A is A, then the
only messages that verifypk/A(·) will return true on are those that A actually signed
with sk/A. Of course, if one wanted to forge a message with A’s signature, they
could attempt to guess sk/A, which is why it is important that secret keys be chosen
completely randomly from a very large space of possibilities. It is also important
that the outputs of signsk/A(·) reveal no information about sk/A that can help one
guess the secret key with greater probability. We will assume that all of these facts
hold for the secret keys and digital signatures used for the rest of the lecture, and
we will also assume that if sk/A was generated by someone other than A (e.g., er
in our running example), then they are trusted not to sign messages on A’s behalf.

Certificates. Because er knows for a fact that CMU’s public key pk/cmu is associ-
ated with the correct principal, it can generate a certificate that asserts this fact with
its signature.

certer→cmu(pk/cmu) ≡ signsk/er (isKey(cmu, pk/cmu))

The predicate isKey(cmu, pk/cmu) denotes the fact that the public key pk/cmu be-
longs to, or is uniquely associated with, the principal cmu . er signs with its secret
key sk/er to authenticate the certificate, as no other principals should have knowl-
edge of sk/er and so only er itself could have produced the certificate.

Now if cmu wants to convince one of the access points that derek is in fact a
student, it can use certer→cmu as part of a sequence of messages:

pk/cmu, certer→cmu(pk/cmu), signsk/cmu(isStudent(derek))

As long as the access point has eduroam’s public key pk/er , then it will be able
to verify that certer→cmu(pk/cmu) is indeed signed by er , and so pk/cmu must re-
ally belong to cmu , and then use pk/cmu to verify that cmu signed isStudent(derek).
cmu can send this information to the access point over an insecure channel, and the
access point will still be able to trust the final conclusion.

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.5

Certificate authorities. Certificates enable the extension of trust to new principals
from pre-existing trust relationships. In our running example, er is trusted by all
access points to issue certificates for the public keys of other principals. In general,
parties endowed with this sort of trust are called certificate authorities (CAs). The
job of a CA is to issue digital certificates that associate principals with public keys,
so in our example the CA is er .

The CA uses their own public/secret key pair to issue certificates, so those who
wish to verify certificates issued by a particular CA need a reliable and secure way
of obtaining the CA’s public key. We will discuss several alternatives for achieving
this in the next section, but for now it is fine to assume that all principals are in
possession of the correct public key for the CA.

2.1 Formalizing certificates and trust

Now that we have seen how signatures and certificates are used to extend trust
relationships, let us think about how to incorporate this into our reasoning about
authorization. Specifically, we will formalize policies that utilize signatures, certifi-
cates, and trust in the CA so that these elements can be used with existing policies
written in authorization logic. We will encapsulate this in a set of policies that
can supplement the assumptions used in a proof, but one could alternatively in-
corporate these principles into axioms in the logic and devise corresponding proof
rules [Bauer, 2003].

The first way in which we might want to use signatures is to introduce affirma-
tions. Namely, if we are in possession of a proposition P signed with sk/A, and we
know that sk/A is the secret key of A, then we can conclude that A says P . We will
label this policy c1 as formalized by the axiom c1.

c1 : ∀x. ∀pk . isKey(x, pk)→ signsk/x (P)→ x says P

There is a small notational issue: previously, signsk/x (P) was defined as a function
returning a signature (typically a string or a large number). Here we are using it as a
proposition. This proposition should contain the signature, but also the proposition
that was signed. So, more properly, it might be written as signed(x, s, P) where
s = signsk/x (P). This is more difficult to read, so we will stick with the shorter
signsk/x (P).

The assumption that makes c1 reasonable is that if a principal is willing to sign
something, then they are prepared to state it as well. In the base authorization logic,
if our proof goal is an affirmation, then we had no choice but to apply saysR and
subsequently prove an affirmation judgement. It is not difficult to see that c1 gives
us an alternative way of proving such goals, namely that whenever we allow the
axiom c1 then we can prove A says P by proving signsk/A(P) and isKey(A, pk/A)
from our assumptions.

There is a secondary issue here, namely that c1 can not be a proper antecedent
since it references an arbitrary proposition P . Quantifying over all propositions is

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.6

dicey (and in any case not allowed in our authorization logic). One way we could
resolve that is to specialize the axioms to a certain class of propositions. Another is
to turn it into an inference rule, the way we have with the axioms of dynamic logic.
In that case we would obtain:

Γ ⊢ isKey(A, pk/A) Γ ⊢ signsk/A(P)

Γ ⊢ A says P
says/sign

The second premise here uses the special sign predicate which we can prove by
algorithmically verifying the signature.

verifypk/A(signsk/A(P), P) = true

Γ ⊢ signsk/A(P)
verify

This role can only be properly understood with the remark regarding our abuse
of notation above: the formula signsk/A(P) should actually contain the signature
string s and either the public key pk/A or the principal A.

Now that we have a way of converting signatures into affirmations, we want
to apply this towards formalizing the trust extension principle behind certificate
authorities and the certificates that they issue. Recall that the trust placed in CAs
is that they will sign messages that reliably tell us which principals are bound to
particular public keys. So if we know that A is a certificate authority, and we have
a certificate certA→B , then this principle lets us conclude that pk/B belongs to B.
We formalize this as follows:

c2 : ∀x. ∀y. ∀pk . isCA(x)→ x says isKey(y, pk)→ isKey(y, pk)

Just as the says/sign rule simplifies the use of c1 in proofs, the cert rule does so
for c2.

Γ ⊢ isCA(A) Γ ⊢ A says isKey(B, pk)

Γ ⊢ isKey(B, pk)
cert

2.2 Example Revisited

Now that we understand how certificate authorities, digital signatures, and certifi-
cates work, let us return to the example from the beginning and sketch how to use
these elements to prove an affirmation using digital signatures. We pick out as a
subgoal the proof that cmu says isStudent(derek). We previously claimed that the
message sequence

pk/cmu, certer→cmu(pk/cmu), signsk/cmu(isStudent(derek))

should convince the verifier that cmu says isStudent(derek). Logically, we express
this message sequence, together with our policy and prior knowledge about the er

as the following sequent:

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.7

c1 : ∀x. ∀pk . isKey(x, pk)→ signsk/x (P)→ x says P (for all P)

c2 : ∀x. ∀y. ∀pk . isCA(x)→ x says isKey(y, pk)→ isKey(y, pk)

x3 : signsk/er (isKey(cmu, pk/cmu))

x4 : signsk/cmu(isStudent(derek))

x5 : isCA(er)
x6 : isKey(er , pk/er)
⊢
?N : cmu says isStudent(derek)

We can define ?N as:

let x7 = c1 er x6 x3 : er says isKey(cmu, pk/cmu) in (for P = isKey(cmu, pk/cmu))
let x8 = c2 er cmu pk/cmu x5 x7 : isKey(cmu, pk/cmu) in
let x9 = c1 cmu x8 x4 : cmu says isStudent(derek) in (for P = isStudent(derek))
x9

This completes the proof. Now the access point can conclude that cmu vouches
for derek and so according to the original eduroam policy that he is allowed to use
the network. Notice how the access point is able to draw this conclusion by trusting
only the CA, er in the beginning, and not cmu or derek . From this initial seed of
trust it was able to “bootstrap” the additional trust assumptions that it needed to
apply the authorization policy. This idea of bootstrapping trust from a few entities
to many through CA designations is a key takeaway of this lecture, and one that is
widely used in practice to enforce authorization on large-scale distributed systems.

2.3 Failure modes

Can principals always rely on certificates and trust relationships to establish au-
thenticity of messages? There are a few situations that the access point needs to
worry about, and they have to do with the assumption that private keys are only
known to their respective principals. If this assumption ever fails, then problems can
crop up in a few places in our running example.

The first case where the assumption can fail is for cmu . Supposing that cmu’s
private key used for signing messages (e.g., signsk/cmu(isStudent(derek))) becomes
compromised and leaks to an untrusted individual who is not authorized to make
statements on behalf of cmu . Then this person can sign messages of their choosing
and have others who believe that pk/cmu belongs to cmu believe them with rea-
sonable evidence. In the context of the example, that individual could sign things
that are patently false, such as isStudent(beyonce), and the access point would be-
lieve that the messages originated from cmu . Recalling that the assertion says

cmu(isStudent(x)) is the only thing one needs to establish to access the network,
this obviously renders the access control ineffective.

The other case corresponding to compromise of eduroam’s secret key has sim-
ilar consequences when considered in the context of our example. If an attacker is

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.8

in possession of eduroam’s secret key, then they gain the ability to generate certifi-
cates that look like they came authentically from eduroam. So rather than using
cmu’s secret key directly, this attacker would generate a separate public/secret key
pair ⟨pk/⋆, sk/⋆⟩, and use er ’s key to certify that pk/⋆ belongs to cmu .

certer→cmu(pk/⋆) ≡ signsk/er (isKey(cmu, pk/⋆))

They could then convince the access point to allow any principal of their choosing
to use the network, sending the messages such as

pk/⋆, certer→cmu(pk/⋆), signsk/⋆(isStudent(beyonce))

As in the previous case, compromise of the secret key sk/er renders the access
control system pointless.

But outside the narrow context of our example, compromise of signing keys be-
longing to parties that are widely trusted to certify identities and establish policies
is extremely serious. Without additional measures in place that we will discuss
later, it gives one the ability to fabricate and steal the identities of arbitrary individ-
uals. This can have dire consequences.

For example, suppose that A and B wish to communicate using their public and
private keys. They trust certificates signed by C, and so if A wishes to send B an
encrypted message, then B will first send A their public key pk/B and a certificate
issued by C that attests to the validity of that public key. Then A can encrypt the
message using B’s public key, encpk/B (. . .), and B will be able to decrypt with their
secret key sk/B .

A B

pk/B , signsk/C (isKey(B, pk/B))

encpk/B (“Hello!”)

Now suppose that a malicious party M has obtained C’s secret signing key. Then
if M is able to intercept all messages passed between A and B, they can read the
encrypted messages intended for B as well as make changes to them. When B
sends A its public key and cert signed by C, then M uses C’s signing key to certify
a chosen public key pk/B⋆ (with corresponding secret key sk/B⋆ known to M), and
forward pk/B⋆ to A with certification instead of pk/B . A will believe that pk/B⋆

is B’s public key because it came with a certificated signed by trusted principal C,

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.9

and use it to encrypt messages to B as shown below.

A M B

pk/B , signsk/C (isKey(B, pk/B))pk/B∗, signsk/C (isKey(B, pk/B∗))

encpk/B∗(“Hello!”) encpk/B (“Goodbye!”)

Of course, because M knows the corresponding secret key sk/B⋆, it can decrypt
and inspect the private messages A sent to B. It can then choose to either re-encrypt
the original message with pk/B , or one of its choosing. This is called a Man-in-the-
Middle (MitM) attack, as the attacker literally situates in between two parties who
believe they are communicating over a secure channel.

3 Public key infrastructure

So far we have glossed over the details of how certificate authorities are assigned
and managed. In the eduroam example, we assumed that access points know the
correct pk/er because they are provisioned expressly for the service, and come pre-
loaded with the necessary data. But certificates are used in all sorts of applications,
and it may not always be possible to transmit the CA’s key in such a way. How do
principals come to trust a CA, and how does the CA know that pk/A actually be-
longs to A in cases where it does not generate the key? Answers to these questions
entail defining a Public Key Infrastructure (PKI), and there are several alternatives
for doing so.

3.1 Centralized CA

The most basic type of PKI consists of a single certificate authority who is trusted
by all principals to issue certificates for everyone’s public keys. Anyone who wants
to use the PKI to establish trust in other principals must obtain a secure copy of the
CA’s public keys, and if they fail to accomplish this, then they will be unable to
verify legitimate certificates issued by the true CA, and may instead end up “ver-
ifying” forged certificates issued by attackers. Protecting against this possibility is
typically accomplished by obtaining a copy of the CA’s key through physical con-
tact, i.e., visiting the CA’s offices and obtaining a file whose contents can be com-
pared against a known checksum. Likewise, to obtain a certificate principals must
usually present physical evidence of who they are, and that the keys they wish to
have signed actually belong to them. Although the details of how this is done vary
between CAs, the basic process must be transparent and rigorous enough so that
others trust the CA’s certs.

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.10

Another popular form of distribution for this model is to bundle public keys
for widely-known CAs with popular software. This is done with browsers and
operating systems, which typically implement a key store that is pre-loaded with
CA keys that can be automatically verified as needed for validation. However, this
approach is not without its risks, as users are often tricked into downloading cor-
rupted versions of software that may have additional keys not associated with real
CAs pre-loaded into the store. In this event, all of the failure modes discussed in
the previous section are possible and likely, which is why it is important to always
verify checksums for software that needs to interact with PKI.

This type of CA is usually a company that charges a fee to issue certificates,
or department within an organization tasked with overseeing security. Because
issuing certificates is a lucrative business model, in practice there are many “cen-
tralized” CAs that exist, and principals are free to choose whichever one they like
when purchasing certificates for their keys. In one important sense this makes the
overall PKI, in which users can choose which CAs to use and trust, less brittle to
compromise of any one CA’s signing key. In fact, it is considered good practice
by some to obtain multiple certificates for the same key, so that if one CA is cor-
rupted then others still have reason to trust the authenticity of the key. However,
most browsers and operating systems that come pre-loaded with CA keys are con-
figured to trust all of them equally, so really the entire PKI is only as trustworthy
as the least-trustworthy CA. Ultimately, the responsibility is placed on end-users
to configure their settings in response to corrupt or compromised CAs as such in-
formation becomes available. This is an unfortunate reality as most users are not
equipped to make such decisions, and fixing it remains an open problem.

3.2 Delegated trust and hierarchical CAs

The reality of key compromise and the wide geographical reach of large certificate
authorities has led to the emergence of an alternative hierarchical PKI. This model
extends the centralized approach, and still makes use of the key distribution and
principal verification strategies used by the centralized model. But now, the pri-
mary “root” CA delegates the ability to issue certificates to a number of subsidiary
or “second-level ” CAs. Certificates issued by second-level CAs then come with
root-issued CAs themselves, thus forming a “certificate chain” that can be verified
in sequence until reaching a trusted root CA with a known public key.

We can formalize this delegation policy using authorization logic. All that the
CA needs to do is sign propositions that denote which principals they trust to sign
on their behalf, e.g. with a predicate trusts(. . .). Then the subsidiary CA can attach
the policy signed by the root CA to any certificate that it issues using its delegation
privilege.

CA says (∀x. ∀y. ∀pk .CA says trusts(x)
→ x says isKey(y, pk)→ isKey(y, pk)

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.11

Figure 1: Example certificate chain used to authenticate the secure nytimes.com
website, as displayed in the Chrome browser.

Checking that the rules described earlier allow others to make effective use of
subsidiary-issued certificates is left as an exercise.

An example of this model in action is shown in Figure 1, which is the current
certificate provided when visiting https://nytimes.com. The root CA in this
case is COMODO RSA Certification Authority (we will call this A), and the second-
level CA is COMODO RSA Organization Validation Secure Server CA (we will call
this B), which is the principal who signed the public key of nytimes.com. The
browser verifies that the certificate for nytimes.comwas signed by B, and that the
certificate for B was signed by the root CA A. In addition, the browser will check
that the root-signed certificate for B’s public key is authorized to sign certificates
itself; this is a special “extension” field supported by the standard (X.509 [IETF, a])
for digital certificates. This special designation essentially says that B is trusted by
A to issue additional certificates on behalf of A, and that those certificates should
be treated as though they were issued by A itself.

The ability to delegate certification authority addresses many of the practical
hurdles in the centralized CA model. Certificate authorities need to shoulder sev-
eral burdens: ensuring the secrecy of the signing key, ensuring that the public key
is readily available for verification, and vetting clients who wish to obtain certifi-
cates. Splitting these responsibilities among several subsidiaries makes good logis-
tical sense. However, it also means that instead of just one signing key, there are
now several that must be kept secret. The root CA must also ensure the integrity
of subsidiary CAs, as they have the ability to issue certificates on behalf of the root
CA, and so the trustworthiness of all related CAs is defined by the least trustwor-
thy subsidiary. In short, while the hierarchical model solves some problems, it
introduces several others.

Given that this model is in use on the Internet, exactly how many different

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.12

organizations can function as CAs and sign keys that your web browser will trust?
It is difficult to be sure, because the distributed nature of delegation means that
there is no central repository listing all CAs and who has delegated to whom. A
study done by the Electronic Frontier Foundation’s SSL Observatory in 2010 found
651 distinct organizations functioning as CAs. That number is likely even higher
today.

3.3 Web of trust

An alternative PKI model to the hierarchical trust model is known as Web of Trust
(WOT). While the hierarchical model is widely deployed in operating systems and
web browsers, WOT has been in use for several decades particularly in the con-
text of the Pretty Good Privacy (PGP) [Garfinkel, 1995] project. In WOT, trust is
completely decentralized and users are responsible for making their own decisions
about which certificates to trust. Likewise, every user is able to issue certificates as
they wish, and distribute them at-will to others.

To get an idea of how this might work, consider a scenario where giselle wishes
to send matt an email encrypted with her secret key. She sends her public key,
along with certificates certmike→giselle(pk1) signed by the CMUQ dean Michael Trick
and certryan→giselle(pk2) signed by ryan . Suppose that matt does not know mike

(because matt has never visited CMUQ). Suppose that he does know ryan , because
they have corresponded previously and so matt has already established the au-
thenticity of ryan’s public key. He can thus verify the first cert certryan→giselle(pk1),
and authenticate giselle’s public key prior to decrypting.

The main advantage of WOT over the prior two models is the distribution of
potential failure. There are no concentrated points of failure in the event of com-
promise, and everyone is incentivized to proactively authenticate the public keys
of anyone they communicate with. Over time, this tends to build redundancy into
the system so that if any one user’s signing key becomes compromised then anyone
who may need to use a cert issued by them will still have several options available.

The main drawback is scalability and usability. While WOT remains in use
in the context of encrypted email, it has not become an established alternative for
other applications as it is difficult and time-consuming to develop a robust network
of trust relationships. Additionally, users who are not familiar with public key
cryptography face hurdles in being tasked with maintaining a secure and extensive
set of trust relationships and certificates, and it is not at all clear that this approach
is usable outside of the relatively homogeneous group of PGP devotees.

3.4 Dealing with certificate compromise

So far we have discussed the possible consequences of key compromise, and weighed
the potential ramifications of several PKI models on this outcome. But what hap-
pens when a signing key becomes compromised? This poses a significant chal-

LECTURE NOTES NOVEMBER 14, 2024

https://www.eff.org/observatory

Bootstrapping Trust L18.13

A1

B1 B2 B3 B4 B5

C1

(a)

A0

A1

A2

A3

A4

(b)

Figure 2: Hierarchical (a) and Web of Trust (b) PKI models, where solid lines corre-
spond to existing trust relationships and dashed curves to the certificate chains that
must be verified to build new ones. In the hierarchical model, A1 is the root CA,
and B1-B5 are the second-level subsidiary CAs. The second-level CAs issue most
certificates, so if one wants to verify C1’s certificate then they need to first check
that B4 signed C1’s key, and then verify that A1 signed B4’s key. In Web of Trust,
all parties occupy a flat hierarchy, and verify certificates using previously-verified
keys. If A3 wishes to authenticate A1’s key, A3 can ask for a certificate signed by
A3, who is a common point of trust between the two parties.

LECTURE NOTES NOVEMBER 14, 2024

Bootstrapping Trust L18.14

lenge, as continued trust in signatures issued with that key cripples the security
of applications that rely on it. The CA needs to disavow, or revoke, the compro-
mised key immediately while ensuring that users are aware that they should no
longer trust the old one. There are several approaches for doing this, none of them
entirely satisfactory. At present, this remains an open and active research question.

Expiration. Nearly all certificates in use today were issued with an expiration
date, as shown in Figure 1. This facilitates a “default” mode of protection against
key compromise, as once the expiration date passes verifiers will no longer trust the
certificate. However, expiration alone is not sufficient to fully address the problem,
as there is an untenable conflict between scalability and the burden on CAs to con-
tinually issue and distribute new certificates, and the “window of vulnerability”
between compromise and the certificate’s expiration date. In other words, it is not
considered feasible to set short certificate lifetimes of, say, one day to one week, be-
cause if this were common practice then there would be no way for CAs to keep up
with the logistical requirements needed to constantly re-issue new certificates. Typ-
ically, CA-issued certificates have lifetimes that last several years, and this leaves
the parties in question with a potentially large time span in which their operations
are affected by compromise. One notable exception to this is Let’s Encrypt, which
has automated the entire process of issuing certificates and so is logistically able to
support three month lifetimes for certificates.

Certificate revocation lists. The most common way of handling this problem is
for the CA to maintain a certificate revocation list (CRL). Each certificate is given a
unique serial number, and if the key becomes compromised then the CA is notified
that the certificate with the corresponding serial number should be revoked. The
CA distributes an updated CRL each day, and verifiers are responsible for cross-
referencing the list when checking a certificate.

Because new CRLs must be obtained by users regularly, this solution imposes
a significant burden on the PKI. Whereas before communications could take place
“offline” without needing to communicate with services exclusive to PKI, this is no
longer the case. If the CRL server goes offline, either incidentally or as the result
of an explicit attack, then users can no longer verify certificates without running
the risk of accepting one signed by a compromised key. Additionally, CRLs tend to
grow quite large over time, and this leads to non-trivial bandwidth costs for ISPs
and end-users, particularly those who operate mobile devices. While proposals for
incremental CRLs exist ([IETF, a], Section 5.2.4), they are not widely implemented.

Online Certificate Status Protocol (OCSP). An alternative to certificate revoca-
tion lists is OCSP, which is an active protocol in which parties “pull” informa-
tion about certificate status rather than having CAs “push” the information rou-
tinely [IETF, b]. The details of the protocol are not immediately relevant to our

LECTURE NOTES NOVEMBER 14, 2024

https://letsencrypt.org/

Bootstrapping Trust L18.15

discussion, but it does offer some interesting tradeoffs to CRLs. The problem that
OCSP alleviates is the transmission of large CRLs to end users. Because typi-
cal OCSP data transfers occur in response to specific certificate transactions, the
amount of data in them is significantly smaller and therefore easier to parse and
manage on resource-constrained devices. However, where connectivity or latency
are issues, OCSP may become more burdensome than if an up-to-date CRL were
stored on the device.

OCSP has also raised concern from privacy advocates. The on-demand “pull”
nature of the protocol essentially requires users to tell a central third party whose
certificates they would like to validate. Because much of the web now supports
HTTPS, which requires certificate validation, this means that visiting a secure web-
site from a browser that uses OCSP (this includes Internet Explorer, Mozilla, Safari,
and Opera, but not Chrome) results in the OCSP server learning that the user vis-
ited that website. To make matters worse, the OCSP proposed standard does not
mandate encryption by default, so third parties sitting between the user and the
OCSP server may also be able to snoop on these requests. For these reasons, the
support for OCSP seems to be waning [Aas, 2024].

Certificate pinning. A fairly recent practice called certificate pinning addresses
the possibility of CA key compromise. Because there are dozens of root CAs that
browsers are configured to trust by default, if any one of these CAs becomes com-
promised then the attacker can issue certificates as that CA for any user or do-
main. So suppose that cmu.edu contracts with only one CA for certificate issuance,
trustedCA. Now a new CA, discountCA, enters the marketplace and quickly be-
comes compromised thanks to their lax security standards. If browsers and oper-
ating systems are already configured to trust discountCA, then the party who com-
promised their key can now issue certificates for cmu.edu, even though cmu.edu

never used the services of discountCA!
Certificate pinning addresses this by allowing parties to “pin” a set of trusted

CAs, so that verifiers will only trust the public keys of pinned CAs chosen by
cmu.edu; in this case, cmu.edu would only pin trustedCA. Certificate pinning
is now common practice when configuring HTTPS websites, and is supported by
all major browsers. One drawback to certificate pinning is that it can obviate legiti-
mate network security tools that essentially use man-in-the-middle attacks to scan
encrypted network traffic for malicious content. Another drawback is that if the
CA becomes compromised, then nobody will be able to verify certificates pinned
to that CA until the pin expiration date arrives.

References

Josh Aas. Intent to end OCSP service. https://letsencrypt.org/2024/07/
23/replacing-ocsp-with-crls/, July 2024.

LECTURE NOTES NOVEMBER 14, 2024

https://letsencrypt.org/2024/07/23/replacing-ocsp-with-crls/
https://letsencrypt.org/2024/07/23/replacing-ocsp-with-crls/

Bootstrapping Trust L18.16

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and
Peter Rutenbar. Device-enabled authorization in the Grey system. In Proceed-
ings of the 8th Information Security Conference (ISC’05), pages 431–445, Singapore,
September 2005. Springer Verlag LNCS 3650.

Simson L. Garfinkel. PGP - Pretty Good Privacy: Encryption for Everyone. O’Reilly,
2nd edition edition, 1995.

IETF. RFC 6960: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) profile. https://tools.ietf.org/html/rfc6960,
a.

IETF. RFC 5280: Internet X.509 Public Key Infrastructure Online Certificate Status
Protocol – OCSP. https://tools.ietf.org/html/rfc5280, b.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman
& Hall/CRC, 2nd edition, 2014.

LECTURE NOTES NOVEMBER 14, 2024

https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc5280

Lecture Notes on

Functional and Higher-Order Information Flow

15-316: Software Foundations of Security & Privacy
Hemant Gouni

Lecture 20
November 21st, 2024

1 Introduction

So far, we have looked at information flow in a simplified imperative setting. We
looked at how to handle constructs like assignments, loops, and memory access for
termination-insensitive information flow, then sprinkled on additional restrictions
to account for termination and timing sensitivity. However, the language we’ve
been using so far lacks even functions! Undoubtedly, you wouldn’t like to work
in such a language. In this lecture, we will show that the foundations of informa-
tion flow we’ve developed generalize well beyond our simple imperative setting to
handle the vastly different case of higher-order functional languages like Standard
ML, OCaml, Haskell, or Lean. Of course, modern languages like Swift, Scala, and
Rust combine both imperative and functional elements. The techniques introduced
in this lecture can be used to develop a relatively complete account of information
flow for them.

2 Functional Programs are Expressions

Recall from Lecture 11 that we defined the security level of expressions and for-
mulas (reproduced in Figure 1) by finding the highest variable among them. For
instance, +F defines the security level of e1 + e2 as simply the highest variable
contained between both (represented by taking their least upper bound ⊔). This
machinery is quite different from that for programs, which did not have a secu-
rity level at all: we had to check them against a policy consisting of assignments
from variables to security levels. The essential difference between expressions and
programs in TinyScript is that expressions evaluate to a value, but programs are
evaluated for their side effects. Because expressions evaluate to a value, they (se-
mantically, the value they return) can be assigned a security level.

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.2

Σ ⊢ e : ℓ

Σ(x) = ℓ

Σ ⊢ x : ℓ
varE

Σ ⊢ c : ⊥
constE

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 + e2 : ℓ1 ⊔ ℓ2
+E

Σ ⊢ P : ℓ

Σ ⊢ e1 : ℓ1 Σ ⊢ e2 : ℓ2

Σ ⊢ e1 ≤ e2 : ℓ1 ⊔ ℓ2
≤F

Σ ⊢ ⊤ : ⊥
⊤F

Σ ⊢ P : ℓ1 Σ ⊢ Q : ℓ2

Σ ⊢ P ∧Q : ℓ1 ⊔ ℓ2
∧F

Figure 1: Information Flow for Expressions and Formulas

For instance, the expression 1 + 1 evaluates to 2, but the program x := 1 + 1
merely produces a poststate [x 7→ 2] when evaluated. All functional programs
are of the former variety: they do not modify variables and therefore produce a
poststate, but exclusively compute and return values. For the same reason that
the information flow rules for TinyScript expressions are much simpler than those
for programs, we can significantly simplify information flow in the functional set-
ting! Gone is the complexity of checking assignments and of carefully setting up
constructs to account for them— in if , while, and (as you saw on Assignment 4)
try/catch. To check information flow for functional programs, we simply have
to extend our existing label propagation approach for expressions and formulas.
In other words, because information flow is a matter of reasoning about the in-
puts and outputs of a computation, we need only worry about the data passed to
expressions and the data they return— because these are the only possible inputs
and outputs in a pure functional setting. Throughout this lecture, we will take
advantage of this simplicity and demonstrate the extra power it affords us.

3 Parametric Polymorphism is Information Flow

We first take a detour into more familiar territory. Consider the function fst in
Figure 2. Type variables would typically have ticks before them, but they are itali-
cized here instead. fst takes two arguments, and returns the first. Its type signature,
a → b → a, expresses exactly this fact! That is, the type of fst captures its informa-
tion flows. The intuition is that if we view a and b as security levels, then the type
tells us the label of the return value: it is the same as the label of the first argument.

The function both is similar, taking two arguments and returning a pair con-
taining them. Again, the return type a∗b tells us exactly which elements of the pair
are dependent on which argument to both. In other words, the label of the first
element is a, and the label of the second is b.

Now turn to add, which again takes two arguments but now adds them to-

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.3

val fst : a → b → a
let fst x y = x

val both : a → b → a ∗ b
let both x y = (x, y)

val add : int → int → int

let add x y = x+ y

type a b sum = Left of b | Right of a
val branch : bool → a → b → a b sum
let branch b x y = if b then Left(x) else Right(y)

Figure 2: A couple ML programs

gether. From an information flow perspective, we’d like to know that the return
value is dependent on both arguments. However, the ML type system will not
allow us to straightforwardly express this: as soon as we do interesting (if you con-
sider adding integers interesting) computation with our data, we lose the ability to
talk about information flow. branch also witnesses this fact: it uses a sum type to
express that the output is dependent on its latter two inputs. However, we miss the
indirect flow from the first input b— which is not polymorphic because we need to
compute with/branch on it— to the return value. Doing information flow this way
is convenient, but appears to be quite brittle... surely there is a better way? We’ll
work informally first, before introducing the typing rules and discussing sound-
ness.

3.1 A Second Attempt: Tagging Types

The key is to recognize that information flow of the variety shown above piggy-
backs on ML’s ability to express machinery that is generic over the structure of
its inputs. In other words, the same mechanism— parametric polymorphism—
is deployed for both writing reusable machinery and specifying information flow
properties. That seems to be the core of our troubles. What if we separate these
two? Instead of conflating polymorphic types, which are intended to describe the
structure of some underlying data, and information flow labels, which describe the
structure of the computation, we introduce a special new type for describing in-
formation flow constraints. For simplicity, we won’t use type variables within the
data portion of the type going forward— we’ll just specialize everything to base
types bool and int.

Figure 3 shows the new types for the terms from Figure 2. M : [a] int can
be read as “the expression M has type int with dependencies a.” The types for fst

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.4

val fst : [a] int → [b] int → [a] int
let fst x y = x

val both : [a] int → [b] int → [a] int ∗ [b] int
let both x y = (x, y)

val add : [a] int → [b] int → [a b] int
let add x y = x+ y

val branch : [c] bool → [a] int → [b] int → [a b c] int
let branch b x y = if b then x else y

Figure 3: Adding information flow labels

and both are nearly identical, now specialized to work on int and with the infor-
mation flow labels appearing separately in brackets [a]. add shows the first signs
of departure, now able to be equipped with an information flow type signature ex-
pressing the dependency of its output on both of its inputs. Finally, the term for
branch has changed: it no longer needs to use a sum type in order to capture its
flows. Over the prior typing, the indirect flow from the conditional guard is now
expressed with the dependency of the output on c.

3.2 Syntax and Typing

Dependencies ϕ ::= ◦ | ϕ α

Types τ ::= bool | int | [τ · ϕ] | τ1 → τ2 | ∀α. τ

Expressions M,N ::= true | false | n | x | M +N | λx.M | M N | Λα.M | M [ϕ]

| if N then M1 else M2

With some intuition in hand, we can look at our information flow system more
formally. A grammar is given above; we have security labels ϕ, types τ , expres-
sions M,N , dependencies α, integers n, and variables x. The form of our typing
judgment— for now— is Γ ⊢ M : τ | ϕ. Our antecedents Γ = x1 : τ1, x2 : τ2, . . .
consist of variables mentioned in M and their types. τ is the type of M , and ϕ is its
set of dependencies. The latter corresponds to the bracketed dependency sets from
Figure 3 and plays the same role as the labels ℓ from Figure 1.

Our dependency sets correspond to mathematical sets, and operations on them
can be thought of that way: ⊏ is ⊂, ⊔ is ∪, and ◦ is ∅. This also means that the
order and number of dependencies within a dependency set does not matter. As a
matter of notation, we will elide ◦ when dependency sets are non-empty.

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.5

ℓH

ℓL1
ℓL2

⊥

α β

α β

◦

The above diagrams illustrate the difference between labels ℓ as we have pre-
viously worked with them, on the left, and labels ϕ in our system, on the right.
We previously worked with abstract labels ℓ drawn from a lattice, with a partial
ordering ⊥ ⊏ ℓL1

, ℓL2
⊏ ℓH between them. The situation here is similar, but now

the internal structure of the labels is exposed via the set of dependencies they repre-
sent. The partial ordering is expressed by taking subsets of those dependencies, as
shown in the diagram on the right. The empty set of dependencies ◦ corresponds
to the ⊥ label. Each dependency represents some particular input to the computa-
tion; for instance, password or gradebook might appear inside labels. Dependencies
won’t always be so concrete; functions will generally introduce generic dependen-
cies corresponding to their arguments, as seen in Figure 3.

Γ ⊢ true : bool | ◦
T-TRUE

Γ ⊢ false : bool | ◦
T-FALSE

Γ ⊢ n : int | ◦
T-INT

Γ ⊢ M : int | ϕ1 Γ ⊢ N : int | ϕ2

Γ ⊢ M +N : int | ϕ1 ⊔ ϕ2

T-ADD

Starting with integers and booleans, we have four rules. T-TRUE, T-FALSE, and
T-INT judge any boolean false/true or integer literal n ∈ N to be a bool or int with no
dependencies. T-ADD computes the label of the addition of two integers to be the
join (or set union) of their labels. We see that these are strikingly similar to the rules
constE and +E presented in Figure 1— in fact, they are essentially identical! This
is no mistake, and the intuition for the earlier rules carries over straightforwardly.
For the program x+ y, where x has dependencies α and y has dependencies β, the
addition expression will have dependencies α β.

Γ, x : τ ⊢ x : τ | ◦
T-VAR

The variable rule is also nearly identical to the prior variant varE, requiring an
x : τ in the antecedents Γ in order to conclude that x has type τ with no dependen-
cies (represented by ◦). The last part is slightly odd, though: variables appear to be
constrained to be at the ◦ (or ⊥) label! This is not the case for constE, which permits

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.6

variables to be at whichever label is prescribed by the environment Σ (which we
previously referred to as the security policy). What gives? The secret is in the next
two rules, which permit security labels ϕ to be captured in types τ .

Γ ⊢ M : τ | ϕ

Γ ⊢ M : [τ · ϕ] | ◦
T-CONSUME

Γ ⊢ M : [τ · ϕ1] | ϕ2

Γ ⊢ M : τ | ϕ1 ⊔ ϕ2

T-PRODUCE

Reading from top-to-bottom, T-CONSUME permits an expression M with some
dependencies ϕ to pull (or ‘consume’) those dependencies into its type, turning its
type τ into [τ · ϕ]. T-PRODUCE reverses this operation, ejecting dependencies from
the type of M back into the typing judgment. Now we see why T-VAR isn’t very
restrictive at all: it’s perfectly valid to have x : [int · ϕ], which can be applied to
T-PRODUCE to get Γ ⊢ x : int | ϕ.

Let’s work through a derivation of the program x + y from before with the
rules we’ve introduced so far. We complete the branch for x; the branch for y is
analogous.

x : [int · α], y : [int · β] ⊢ x : [int · α] | ◦
T-VAR

x : [int · α], y : [int · β] ⊢ x : int | α
T-PRODUCE

. . . y : int | β . . .

x : [int · α], y : [int · β] ⊢ x+ y : int | α β
T-ADD

It appears the rules are tracking information flow faithfully, as expected: the
labels of both inputs to the addition are forced to be represented in the dependency
set of the output. In our setting, a bad flow is one where the dependencies of the
source of some flow (here, the inputs to addition) are not expressed in the type or
dependency set of the destination (the output of addition).

Γ ⊢ N : bool | ϕb Γ ⊢ M1 : τ | ϕ Γ ⊢ M2 : τ | ϕ

Γ ⊢ if N then M1 else M2 : τ | ϕb ⊔ ϕ
T-IF

T-IF is simpler than in the imperative setting. Since we’re working in a func-
tional language, if now returns the value of its succeeding branch rather than exe-
cuting it for its side effects. This is reflected in the type τ of a conditional expression
being the same as the type of its branches. T-IF requires that the security level of
the whole expression ϕb ⊔ ϕ depends on the security level of the conditional guard
ϕb, which accounts for indirect flows. Previously, we set pc to the security level
ϕb of the branch, but our language lacks assignment, memory access, or any other
kind of side effecting operation, so we’re absolved of that requirement.

A choice that may seem slightly odd here is that both of the branches are con-
strained to return the same dependency set ϕ. This seems unnecessarily prohibitive!
Let’s try relaxing this restriction.

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.7

Γ ⊢ N : bool | ϕb Γ ⊢ M1 : τ | ϕ1 Γ ⊢ M2 : τ | ϕ2

Γ ⊢ if N then M1 else M2 : τ | ϕb ⊔ ϕ1 ⊔ ϕ2

T-IF?

The first rule turns out to be just as expressive as this one. To see why, consider
the following program in ML:

val branch′ : [b] bool → [a] int → [a b] int
let branch′ b x = if b then x else 0

We might intuitively expect this would fail under the first rule because we have
x : int | α in the first branch and 0 : int | ◦ in the second. It turns out this is typable
under T-IF because of another rule we haven’t yet accounted for: weakening.

Γ ⊢ M : τ | ϕ

Γ ⊢ M : τ | ϕ α
T-WEAKEN

The rule of weakening allows us to add an arbitrary dependency to any ex-
pression. This may seem strange, but from an information flow perspective, it is
intuitively sound: we may not lie downwards about our expression being of lower
security than it actually is, but we may lie upwards and say that it is of higher secu-
rity than it strictly needs to be. Think about it this way: it is fine to mark the boolean
true with dependency password , because all this means is that we must now treat
that boolean as though it contains password information— no password data can
be leaked from this maneuver. Concretely, this means we can derive · ⊢ 0 : int | [β]
like so:

· ⊢ 0 : int | ◦
T-INT

· ⊢ 0 : int | β
T-WEAKEN

In other words, whenever we have differing ϕs across branches, we can join
them together and add dependencies on either side until they are equivalent. With
this in our pocket, let’s attempt a derivation for the body of branch’ above. Premises

in a box are those yet to be solved.

b : [bool · b], x : [int · a] ⊢ b : [bool · b] | ◦
T-VAR

b : [bool · b], x : [int · a] ⊢ b : bool | b
T-PRODUCE

x 0

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.8

. . . b . . .

b : [bool · b], x : [int · a] ⊢ x : [int · a] | ◦
T-VAR

b : [bool · b], x : [int · a] ⊢ x : int | a
T-PRODUCE

0

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME

. . . b x . . .

b : [bool · b], x : [int · a] ⊢ 0 : int | ◦
T-INT

b : [bool · b], x : [int · a] ⊢ 0 : int | a
T-WEAKEN

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : int | a b
T-IF

b : [bool · b], x : [int · a] ⊢ if b then x else 0 : [int · a b] | ◦
T-CONSUME

The invocation of T-WEAKEN in the last case shows our strategy for unifying
dependencies across branches– we add a dependency a to 0 to satisfy T-IF. Return-
ing to familiar territory, the rule for creating a lambda is nearly identical to what
we have already seen. In Lecture 17, we introduced the ‘proof term’ versions of the
→L and →R rules as:

Γ, x : P ⊢ N : Q

Γ ⊢ (λx.N) : P →Q
→R

Γ ⊢ N : P Γ,M N : Q ⊢ O : δ

Γ,M : P →Q ⊢ O : δ
→L

Γ, x : τ1 ⊢ M : τ2 | ◦

Γ ⊢ λx.M : τ1 → τ2 | ◦
T-LAM

Γ ⊢ M : τ1 → τ | ϕ Γ ⊢ N : τ1 | ◦

Γ ⊢ M N : τ | ϕ
T-AP

T-LAM corresponds the right rule, and is nearly identical. T-AP and the left
rule differ slightly: the left rule returns the result of application through its second
premise, whereas T-AP presents the application form in its conclusion. As a slight
aside, this captures the essential difference between sequent calculus and natural
deduction-style presentations of programming language theory. In general, it will
be the case that rules of creation will be identical between natural deduction and
sequent calculus presentations, but rules for usage will return their result in the
antecedent of a premise. In any case, the distinction isn’t relevant here beyond
gaining an understanding of the application rule.

The notable part of T-LAM is that it requires the body of the lambda to have
consumed its dependencies into its type. We may be tempted to write the rule
instead as follows, with the ϕ propagating through the lambda:

Γ, x : τ1 ⊢ M : τ2 | ϕ

Γ ⊢ λx.M : τ1 → τ2 | ϕ
T-LAM?

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.9

This is possible, but semantically odd: from an information flow perspective,
the dependencies of the function body are only expressed when it is called, not
when it merely appears somewhere. Formally, this happens because a lambda is
a negative type, and is therefore defined by how it is used— not by its passive
structure. No information can be observed from a lambda without calling it, so we
only track information flow on application. We also force function arguments to
have consumed all their dependencies in the second premise of application. This
forces programs to track information flow more precisely. Consider the function
which takes an argument with a higher label than its result:

y : [int · α] ⊢ λx. 1 : [int · α] → int | ◦

When we apply this function, it’ll have the empty set of dependencies, even
though the argument did not:

y : [int · α] ⊢ (λx. 1) y : int | ◦

Beyond precision, there is a deeper semantic reason for the choice that function
arguments must have no dependencies: it makes our system easy to extend to
handle side effects and more advanced forms of information flow checking. We
won’t have time to talk about this more, though.

Finally, we have T-DEPLAM and T-DEPAP. The two rules below are similar
to the left and right rules for universal quantifiers previously introduced. Just as
T-LAM binds a variable, T-DEPLAM binds a dependency. We can then use T-DEPAP

to instantiate that dependency to some dependency set, substituting it into the type
under the quantifier ∀. This allows us to write functions which are polymorphic
over the dependencies of their inputs, just as we can write functions in ML which
are generic with respect to the structure of their arguments. Before we look at an
example, a small omission must be revealed: beyond Γ for keeping track of term
variables, we also need ∆ in our typing judgment for tracking which dependency
variables are currently in scope.

T-DEPLAM

∆, α; Γ ⊢ M : τ | ◦

∆;Γ ⊢ Λα.M : ∀α. τ | ◦

T-DEPAP

∆;Γ ⊢ M : ∀α. τ | ϕ′ ∆ ⊢ ϕ dep

∆;Γ ⊢ M [ϕ] : [ϕ/α]τ | ϕ′

And we must update T-WEAKEN to scope check the weakened variable, be-
cause we want to preserve the property that all dependency sets are well-scoped.
As a technical detail, we must also check in T-LAM that the function argument
is well-scoped, because it’s effectively pulling its argument type out of thin air.
Briefly, if we assume inductively that M at type τ2 is well-scoped, that tells us
nothing about the scopedness of τ1.

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.10

∆;Γ ⊢ M : τ | ϕ ∆ ⊢ α dep

∆;Γ ⊢ M : τ | ϕ α
T-WEAKEN

∆;Γ, x : τ1 ⊢ M : τ2 | ◦ ∆ ⊢ τ1 type

∆;Γ ⊢ λx.M : τ1 → τ2 | ◦
T-LAM

Let’s try to type the identity function in our system. First, what does this look
like in ML? The following seems reasonable:

val id : [a] int → [a] int
let id x = x

This corresponds to the following typing:

·; · ⊢ Λα. λx. x : [int · α] → [int · α] | ◦

Which results in the following derivation:

·, α; ·, x : [int · α] ⊢ x : [int · α] | ◦
T-VAR

. . .

·, α ⊢ [int · α] type

·, α; · ⊢ λx. x : [int · α] → [int · α] | ◦
T-LAM

·; · ⊢ Λα. λx. x : ∀α. [int · α] → [int · α] | ◦
T-DEPLAM

That was pretty painless! We omit the derivation of the scoping premise for
T-LAM because it’s straightforward: it simply checks that all dependency variables
mentioned in τ1 = [int · α] are mentioned in ∆ = ·, α. We can then instantiate α
to some b, c, assuming those dependencies are in scope, by substituting away the
former for the latter:

. . .

·, b, c; · ⊢ Λα. λx. x : ∀α. [int · α] → [int · α] | ◦

...

·, b, c ⊢ b c dep

·, b, c; · ⊢ Λα. λx. x [b c] : [int · b c] → [int · b c] | ◦
T-DEPAP

We can easily handle higher-order functions, too! Consider the below ML pro-
gram which executes some arbitrary function twice:

val twice : [a] int → ([a] int → [a] int) → [a] int
let twice x f = f (f x)

We can witness its information flow security through the following derivation–
no tricks here, just rote application of our existing rules. Let’s start by doing the

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.11

derivation up to the first application form. We’ll elide the scope checking premises
for space reasons and because well-scopedness is straightforward here.

f f x

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

·, α; ·, x : [int · α] ⊢ λf. f f x : ([int · α] → [int · α]) → [int · α] | ◦
T-LAM

·, α; · ⊢ λx. λf. f f x : [int · α] → ([int · α] → [int · α]) → [int · α] | ◦
T-LAM

·; · ⊢ Λα. λx. λf. f f x : ∀α. [int · α] → ([int · α] → [int · α]) → [int · α] | ◦
T-DEPLAM

Then we type check f via T-VAR, eliding the typing environment because it is
the same as the conclusion:

·, α; . . . ⊢ f : [int · α] → [int · α] | ◦
T-VAR

f x

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

And finally we type check its argument, which contains another call to f , in
much the same way:

. . . f . . .

. . . ⊢ f : [int · α] → [int · α] | ◦
T-VAR

. . . ⊢ x : [int · α] | ◦
T-VAR

·, α; . . . ⊢ f x : [int · α] | ◦
T-AP

·, α; ·, x : [int · α], f : [int · α] → [int · α] ⊢ f f x : [int · α] | ◦
T-AP

In summary, to deal with the higher-order function f , we simply introduce it
as a standard variable into our typing environment and type check usages of it
as usual. When we apply it, we use its type signature to determine the resulting
information flows.

We don’t have lists in our formal language, but we might wonder what a stan-
dard higher-order function like map looks like. Let’s look at an example in ML:

val map : ([a] int → [b] int) → [a] int list → [b] int list
let map f lst = match lst with

| [] → []
| hd :: tl → f hd :: map tl

This bears striking similarity to the standard type for map, and it is tempting to
stop here. However, it is not fully general: the length of the list betrays information
dependencies! In reality, the type [a] int list is hiding a second dependency envi-
ronment, constrained to be empty– its true form is [] ([a] int) list. If we want to

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.12

allow our map function to work over lists which may have lists whose structure—
not just contents— induce flows, then we need to introduce another flow variable:

val map : ([a] int → [b] int) → [l] ([a] int) list → [l] ([b] int) list
let map f lst = match lst with

| [] → []
| hd :: tl → f hd :: map tl

It is worth noting that f itself may have information flow dependencies, so we
really could further add a dependency variable to the function type itself. How-
ever, due to the structure of the T-LAM rule this is rare enough that we consider
the above signature to be general enough. Additionally, there exists a way to take
any data at function type with dependencies of its own, and integrate it into the
dependencies its return value.

3.3 Noninterference

Why is this information flow at all— or rather, what does it have to do with infor-
mation flow as we’ve talked about it previously? All information flow systems are
joined at the hip by noninterference. Recall the prior definition of noninterference,
from the Lecture 11 notes.

We define Σ |= α secure iff for all ω1, ω2, ν1, ν2, and ℓ
Σ ⊢ ω1 ≈ℓ ω2, eval ω1 α = ν1, and eval ω2 α = ν2 implies Σ ⊢ ν1 ≈ℓ ν2.

We won’t give a semantic definition of noninterference in our setting, because
the soundness argument for this system is quite complicated due to the presence
of quantification. However, boiling this definition down to its essence, it states
that, holding all low data constant, evaluating the same program under two states
which differ along high data should yield equivalent results. We can intuit a similar
property in our setting. First, define the constant function:

const ≜ λx. 1

A valid typing for this is [int · α] → int, assuming that the argument is an in-
teger dependent on some α (you might imagine this to be denoting a dependency
on something sensitive, like a password). More generally, for our purposes the in-
put type need only have more, or different, dependencies than the output.1 The
following should be true:

const x ≡ const y for all x, y

1For technical reasons, each dependency in the type should be assumed to be quantified over
exactly the shown type. The simplified view suffices for our informal approach here, though.

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.13

Where it may be the case that x ̸≡ y. In fact, it turns out that we can replace const
here with any expression of type [int ·α] → int, and the above property should hold.
That is, assume f is some such term. Then noninterference in our case guarantees
that:

f x ≡ f y for all x, y

Any function from high data to low data must only reveal the low data. Let’s
look at one more example, inspired from one we’ve seen in Lecture 12. (We haven’t
yet introduced an equality construct, but information flow-wise, it is analogous to
T-ADD.)

check ≜ λpassword . λattempt . password = attempt

If we imagine that password has dependency p, then can the output of this func-
tion be something that isn’t dependent on p? Let’s rashly assume that the type of
this function is:

[int · p] → int → bool

Of course, this seems wrong: there’s an indirect flow from password to the return
value! Can we use our intuition about non-interference to show that this typing
is invalid? Remember that, parenthesizing, the above type is equivalent to the
following, which fits our type schema from the constant function above.

[int · p] → (int → bool)

Non-interference says any program of this type should satisfy the equation:

check x ≡ check y for all x, y

Okay, so let’s see if check 2 3 ≡ check 3 3 (with the same argument given for at-
tempt on both sides, because it’s ‘low’). check 2 3 returns false, but check 3 3 returns
true. So we’ve reduced the problem to showing false ≡ true, which is impossible!
Noninterference tells us [int · p] → int → int cannot possibly be a valid typing for
check. Recall, however, that we originally introduced this example in the context
of declassification— a password checker which is barred by the type system from
returning a low-security boolean doesn’t seem useful...

3.4 Bonus: Existential Quantification, or Declassification

...which is precisely why we introduced declassification! Remarkably, it turns out
that the constructs we have introduced so far are all we need to implement a form
of declassification in the functional setting, with the key being higher-rank quantifi-
cation. Let’s work backwards, starting from our types:

impl : (∀p. [int · p] → ([int · p] → int → bool) → int) → int

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.14

This is the type of a declassifier which offers certain methods it controls to a client.
The methods here are the first two arguments of the outermost higher-order func-
tion, which are [int · p] and [int · p] → int → bool. Note that the quantifier ∀p is over
this higher-order function’s type, not the whole function type— this is what makes
the quantification higher-rank. In order to demystify the situation, let’s investigate
this type from two perspectives, implementation and usage.

impl ≜ λclient . client [◦] 4 (λpassword . λattempt . password = attempt)

client ≜ impl (Λp. λpassword . λcheck . if check password 4 then 1 else 0)

Since client fully applies impl, it must be the case that its type is int, without
any dependencies. How can this be? client obviously returns an int dependent
on password, since it branches on the value of password. And password appears to
have a depedency on p by its type [int · p]— but the eventual return type for the
computation is int! It seems the prime offender is check, which takes in a [int · p]
and another int and returns just a bool. By our prior discussion, this would be
fine if check was constant in its first argument, but it isn’t! We can see that its
output is dependent on its ‘high-security’ argument— comparing it and returning
the result— despite returning a low-security value.

Our hat trick here leverages higher-rank quantification, particularly existential
quantification, permitting one view of password data to the implementation of the
type and another view to any clients. The key is the instantiation in impl: it sets the
dependency p, which is bound inside client, to ◦. This allows it to arbitrarily ma-
nipulate p while implementing the password field and check method which will be
provided to client. Meanwhile, client is oblivious to the fact that this trick has been
pulled: the function it provides to impl is fully polymorphic in its dependency p
(indicated by binding p with a Λ), so it must treat it as any other dependency.

The warning in footnote 1 from the prior section stems from the fact that we can
do declassification by instantiating dependency variables to ◦. Non-interference
must in reality operate on fully quantified functions, where the flows expressed in
the type are not for some instantiation of dependency variables (possibly to ◦), but
for all instantiations. Concretely, the first of the following evidently isn’t true of the
preceding check function (of type [int ·p] → int → bool), but the second must be true
of some check ′ of type ∀p. [int · p] → int → bool.

check x 1 ≡? check y 1 for all x, y

check ′ [ϕ] x 1 ≡ check ′ [ϕ] y 1 for all ϕ, x, y

For more information about deploying existential quantification to elegantly
address declassification, see Cruz and Tanter [2019]. The main benefit of such a
system is that declassification is constrained: each impl may only declassify the ex-
istential variables introduced into clients by it. All others must behave as ordinary
dependencies. This provides excellent local reasoning properties: we can be sure

LECTURE NOTES NOVEMBER 21ST, 2024

Functional and Higher-Order Information Flow L20.15

that functionality intended to declassify password data, for instance, does not ac-
cidentally affect gradebook data.

4 Remarks

The system we have introduced here bears striking similarities to System F as intro-
duced in Girard [1972] and Reynolds [1984]. System F provides the basis for para-
metric polymorphism as featured in many real-world programming languages,
and enjoys a relational property called parametricity which turns out to be quite
similar in flavor to noninterference. Another approach to information flow within
functional languages can be found in Simonet [2003], which addresses information
flow for (a subset of) OCaml in a more directly lattice-based manner.

The contents of this lecture is the subject of (my) ongoing research! In this note
we’ve introduced the fully structural fragment. It turns out that we can remove
T-WEAKEN from the system and retain a sensible notion of non-interference. We
can also remove two further rules corresponding to contracting ([α α] = [α])
and commuting ([α β] = [β α]) dependencies, which we assumed implicitly
in this lecture, and these too have reasonable non-interference properties (in fact,
the former case can be seen to correspond to timing-sensitive information flow).
The soundness of the system relies on a powerful generalization of the typical non-
interference theorem, called substructural non-interference.

References

Raimil Cruz and Éric Tanter. Existential types for relaxed noninterference. In
Anthony Widjaja Lin, editor, Programming Languages and Systems, pages 73–92,
Cham, 2019. Springer International Publishing. ISBN 978-3-030-34175-6.

Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’État, Université Paris VII, 1972.

John C. Reynolds. Types, Abstraction, and Parametric Polymorphism. In R. E. A
Mason, editor, Information Processing 83: Proceedings of the IFIP 9th World Computer
Congress, Paris, France, September 19-23, 1983, pages 513–523, Amsterdam, 1984.
Elsevier Science Publishers B. V. (North-Holland).

Vincent Simonet. Flow Caml in a Nutshell. In Graham Hutton, editor, Proceedings
of the first APPSEM-II workshop, pages 152–165, Nottingham, United Kingdom,
2003.

LECTURE NOTES NOVEMBER 21ST, 2024

Lecture Notes on

Differential Privacy

15-316: Software Foundations of Security & Privacy
Frank Pfenning*

Lecture 22
December 6, 2024

1 Introduction

In Lecture 12 we looked at ways of relaxing noninterference so that we could rea-
son about the information flow security of programs that leak some, but not “too
much” information about their secrets. To address this problem in the special con-
text of authorization checks, we discussed a type system due to Volpano and Smith
[2000]. They introduced a match construct and a corresponding typing rule that
we later generalized to an arbitrary declassification construct.

if declassify(guess = pin)
then auth := 1
else auth := 0

For this program, our security policy assigned pin high security level and guess

and auth low security level.
We did not formally introduce the notion then, but we can define the feasible set

as those initial states that lead to the observable outcome.

ΩΣ(ω, α) = {ω′ | Σ ⊢ ω ≈L ω′ and Σ ⊢ eval ω α ≈L eval ω′ α}

The password checker above is acceptable because its feasible set is rather large,
say, 264 − 1 if the outcome is auth = 0. Every time we run this program with a
new guess we can reduce the size of the feasible set by 1 (even if this temporal
evolution isn’t part of the formal definition). By contrast, if we replaced equality
by declassify(guess ≤ pin) then we can cut the size of the feasible set in half every

*Almost entirely based on notes by Matt Fredrikson including some edits by Giselle Reis and Ryan
Riley

LECTURE NOTES DECEMBER 6, 2024

https://15316-cmu.github.io/2024//lectures/12-declassification.pdf

Differential Privacy L22.2

time we run the program. As you saw in Lab 2 this can easily be used for an attack
on a server to discover the pin .

You can think of the size of feasible set as a quantitative measure of the uncer-
tainty that a user (possibly an attacker) has regarding the high security part of the
initial state, once they know the outcome.

In today’s lecture, we will look more carefully at a different set of techniques
for revealing some useful information about secret state while controlling the at-
tacker’s level of uncertainty about it. These techniques all use randomness to pro-
duce approximate results for computations, while providing some form of cover
for the true secret. We will look at a property called differential privacy [Dwork,
2006] that formalizes the protections one might gain from this approach, and study
some properties that make it useful for building computations that protect secret
data. Differential privacy has been applied to a wide range of important computa-
tions to protect the privacy of source data [Dwork and Roth, 2014], from machine
learning [Chaudhuri et al., 2011] to web browser data collection [Erlingsson et al.,
2014]. We will not have time to cover these applications in any detail, but will
instead focus on the core ideas behind the approach.

2 Quantifying Uncertainty

As discussed above, when the feasible set is large, it is an indication that the asso-
ciated program did not reveal “too much” about its secret initial state. The reason
for this is that when a large number of initial states remain consistent with an at-
tacker’s observations, then the attacker’s uncertainty about which one was actually
used is great. So perhaps we can reason about information flow security in terms
of keeping the attacker’s uncertainty about the secret high.

But what can we do if the program that we want to write is inherently “leaky”
in that it results in small feasible sets? One way that we can make the attacker more
uncertain about the secret initial state is to use randomness in our program. Con-
sider for example a technique called randomized response [Warner, 1965], which is a
privacy technique dating back to the 1960s with roots in the social sciences. Ran-
domized response was motivated by survey collection, in situations where ques-
tions asked of respondents relate to sensitive issues. Randomized response gives
these subjects plausible deniability, by providing a structured way of adding random
“noise” to their answer.

In the following, assume that flip() is a random function that flips an unbiased
coin. In other words,

flip() =

{

1 with probability 1/2
0 with probability 1/2

Then suppose that F is a function that returns a value in {0, 1}, and that we wish
to release F (x) publicly while hiding the secret value x as much as possible. Then

LECTURE NOTES DECEMBER 6, 2024

https://15316-cmu.github.io/2024//homework/lab2-infoflow.pdf

Differential Privacy L22.3

the randomized response program RandResp, is as follows, where we assume that
the variable out is publicly-observable and b is not (e.g., Γ = x : H, b : H, out : L).

b := flip()
if b = 1 then
out := F (x)
else

out := flip()

In short, randomized response returns the true value of F (x) with probability 1/2,
and a completely random answer with probability 1/2. In terms of feasible sets,
this appears to be an absolutely brilliant approach because now the attacker must
be completely uncertain about the initial value of x. Why is this so? The adversary
can only see out , and if b = 0 after being assigned, then out does not depend at all
on x, so x could be anything as though the program satisfied non-interference.

But perhaps this does not seem quite right. Let us assume for a moment that
x ∈ {0, 1} and F is simply the identity function, and walk through the various
possibilities. In the following, we will treat RandResp as though it were a function
of x that returns the value in out after executing. If x = 0, then,

Pr[RandResp(0) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip() = 0] = 1/2 + 1/4 = 3/4

We could use the exact same reasoning to conclude that Pr[RandResp(1) = 1] = 3/4.
Likewise we could reason about the probability that randomized response outputs
an incorrect answer,

Pr[RandResp(0) = 1] = 1− Pr[RandResp(0) = 0] = Pr[b = 0 ∧ flip() = 1] = 1/4

So we see that RandResp outputs the correct value of F (x) with fairly high probabil-
ity of 3/4, and an incorrect “random” value with probability 1/4. In other words,
most of the time the attacker is safe in assuming that RandResp outputs exactly the
same value as F (x), and so can go about inferring x by computing feasible sets as
before.

This is not to say that randomized response does nothing to protect x, and in-
deed it may offer ample protection for many applications because the attacker still
has more uncertainty than they would otherwise. But by reasoning about the prob-
abilities of various outcomes and what the attacker is able to infer from them, we
arrived at a much more nuanced view of the degree of security than was suggested
by looking at the feasible set of RandResp alone.

2.1 Quantifying a Tradeoff

There are some arbitrary choices that have been made in this conception of ran-
domized response, and they influence the degree of adversarial uncertainty of the

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.4

secret input x. In particular, we could generalize flip() by adding a parameter
0 ≤ p ≤ 1 controlling the bias of the coin.

flip(p) =

{

1 with probability p
0 with probability 1− p

We could use this in RandResp as follows, assuming p is chosen to be some constant
in advance.

b := flip(p)
if b = 1 then
out := F (x)

else

out := flip(p)

Then updating the analysis we did before with this more general solution, we see
that:

Pr[RandResp(x) = F (x)] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = F (x)]
= p+ (1− p)Pr[F (x) = flip(p)]

When F is the identity function then we have,

Pr[RandResp(0) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 0] = p+ (1− p)2

Pr[RandResp(1) = 1] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 1] = p+ (1− p)p

So if we set p ≥ 1/2, then we would be sure to have a more accurate answer in
the sense that RandResp returns F (x) with greater likelihood. But this comes at a
tradeoff in information flow security, as the attacker can also be more confident
(less uncertain) about the feasible set. Likewise, smaller values of p lead to a less
accurate solution, but increase the attacker’s uncertainty and so afford greater se-
curity.

3 Differential Privacy

Now we will turn to a property that is useful in many cases for characterizing the
adversarial uncertainty one obtains through the use of randomized computation.
In this setting, we will assume that the program α makes use of memory opera-
tions, and wants to prevent too much information about the contents of any cell
in from leaking through its output result. It is called differential privacy, and is an
active area of study and application.

In the following, we will assume that all of the indices in memory m are secret
and so typed H, and that all of the variables used by the program are typed L. So
intuitively, think of the memory m as perhaps being an input where each cell holds
the data of one individual that is to be used by α. The developer of α wishes to
compute some useful aggregate fact about the individuals’ data, and will store the

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.5

result in the variables of the final state eval (ω,m) α. The goal is to make sure that
the results do not reveal too much information about any single individual’s data
stored in m.

Definition 1 (ϵ-Differential Privacy) Let ϵ ≥ 0. A program α satisfies ϵ-differential
privacy if for all possible memory configurations m1 and m2 that differ in exactly one
index, and all states ω and ν, the following inequality holds:

Pr[eval (ω,m1) α = ν] ≤ eϵ · Pr[eval (ω,m2) α = ν]

The probabilities in this expression are taken over the randomness of α’s computation.

We write m1 ∼1 m2 if m1 and m2 differ in one index. The fact that α is a
program that does not explicitly “output” a single value is indeed irrelevant to the
essence of this definition. It may be clearer for some to just think of α as a function
f that takes a memory configuration m as input and returns a single discrete value
rather than a state. This leads to the following equivalent definition.

Definition 2 (ϵ-Differential Privacy (functional form)) Let ϵ ≥ 0. A function f sat-
isfies ϵ-differential privacy if for all possible inputs m1 and m2 with m1 ∼1 m2 and all
return values s the following inequality holds:

Pr[f(m1) = s] ≤ eϵ · Pr[f(m2) = s]

The probabilities in this expression are taken over the randomness of f ’s outputs.

To keep notation as simple as possible, we will stick with the latter form of the
definition for the remainder of the lecture.

First, notice that Definition 2 is a property of the function f , and not of the
data being computed on or any particular output of f . In other words, when we
speak of something as being differentially private, we are always referring to a
process used to compute outputs from secret inputs. You may at times hear people
refer to a piece of data as “differentially private”, but do not get confused; when
used correctly, this language means that the data was computed by a function that
satisfies ϵ-differential privacy.

Second, the ϵ in Definition 2 is called the privacy budget, and controls the tradeoff
between privacy and accuracy in much the same way that p did in our randomized
response example before. We will get into some high-level intuitive interpretations
of this definition in a little while, but first let us think about its various components
and how they relate to f ’s behavior directly.

Privacy budget ϵ. We hinted earlier that the privacy budget has an influence on
both the degree of privacy established by the function, as well as the degree of

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.6

approximation in the results. ϵ is our privacy budget, and it is a numeric real-
valued quantity. To understand what it means, let us look at the behavior of an
ϵ-differentially private f for extremal values of ϵ.

Suppose that we make ϵ = 0. Then Definition 2 requires that for any m1 ∼1 m2

and outputs s, the stated inequality holds. Notice that the definition is symmetric
in the values that m1 and m2 take; there is nothing that distinguishes them from
each other, so f must also satisfy:

Pr[f(m2) = s] ≤ Pr[f(m1) = s]

Combining the two inequalities, it must be that Pr[f(m1) = s] = Pr[f(m2) = s] for
all m1 ∼1 m2 What does this mean for the privacy of individuals in m1 and m2,
and the utility of f?

• When it comes to privacy, we can conclude that ϵ = 0 implies no leakage of
information about the contents of any individual. Why does this hold for any
index? Recall that Definition 2 needs to hold for all pairs m1 ∼1 m2. So, if our
actual input is m1, then all inputs m2 that we obtain by changing one index
in m1 must produce the same distribution of outputs in f .

• As for utility, you probably guessed that ϵ = 0 is not great. In fact, because f ’s
output distribution needs to remain the same for all adjacent inputs, we can
observe that by transitivity f ’s output distribution needs to remain the same
for all inputs. In other words, the results cannot contain any information
about the input, which clearly means no utility is possible.

On the other hand, when ϵ tends to infinity, then the inequality is automatically
satisfied because the right-hand side become arbitrarily large. Therefore, no con-
straint is imposed on the function and privacy drops off very quickly. This yields
maximal utility, because we can have all available data without randomness.

3.1 Interpreting the Definition

Now that we have thought about the definition and some of its technical implica-
tions, let us think about what it means for privacy.

Inference and protection from harm. One view of privacy is that it is about pro-
tecting individuals from harm that may arise from the release of their data. By
learning things about individuals, a party with corrupt intent might use that infor-
mation to limit their opportunities (e.g., deny them a job or a loan), offer differen-
tiated services (e.g., higher prices for customers from affluent areas), or otherwise
discriminate against them in numerous ways that play against their advantage.

One question that we might ask is, why not strive for a definition that pre-
vents such parties from learning anything new about an individual from a result

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.7

involving their data? If nothing new about the individual can be learned from the
release, then no harm can follow. Researchers have contemplated this possibility
before [Dwork, 2006], and not suprisingly it turns out that doing so is at funda-
mental odds with a simultaneous goal of extracting useful insights from personal
information.

Differential privacy aims to protect individuals from such harm to the greatest
extent possible. The key to this is the relative nature of the definition. Rather than
trying to prevent users from learning anything about an individual, we can think
of the definition as trying to prevent users from learning new things about an indi-
vidual relative to what they could have learned had the individual not shared their
data. This is where the idea of neighboring inputs comes from: a neighboring in-
put is one in which a particular individual’s data takes a different value, which we
can view as being a input where everyone except that individual shared (i.e., some
other individual took their place). Differential privacy requires that any output of
f be approximately as likely in both cases: one where the individual shared their
data, and one where they did not.

For example, suppose that you are given the opportunity to share your medical
records with a researcher who will use them in a study intended to improve treat-
ments. You may rightly be concerned that if the researcher publishes results based
on your data, a data-savvy insurance provider might be able to infer something
about your health status from these results in the future, and decide to raise your
premiums or deny coverage. However, if the researcher applied differential pri-
vacy with an appropriately-chosen ϵ, then you might be reassured that no results
that could come of the study would be that much more or less likely because of
your decision to share. It follows that if an insurer were to base their decision on
those differentially-private results, then they are similarly not much more or less
likely to deny you coverage.

Plausible deniability. Another way of looking at the protection given by differ-
ential privacy is in terms of plausible deniability, or one’s ability to make a believable
claim that their data takes some value of their choosing, i.e., to “deny” a claim that
their data took the value it did. Because Definition 2 requires that the likelihood
of f responding with any value s is nearly identical regardless of what value the
individual’s data took, it would indeed be reasonable for the individual to claim
that their data took another value; the probability of producing s would be about
the same no matter what value they chose.

Indistinguishability and influence. Another way of viewing the definition, which
brings us closer to the semantics of the computation done by f , is in terms of how
much individuals’ data can influence, or cause changes to, f ’s response. We have
talked about influence before in the context of noninterference, which required that
the H-typed parts of the initial state have no influence on the L-typed parts of the

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.8

final state:

For all ω1, ω2, Σ ⊢ ω1 ≈L ω2 implies Σ ⊢ eval ω1 α ≈L eval ω2 α

We might rewrite Definition 2 more concisely as follows.

For all m1, m2, m1 ∼1 m2 implies Pr[f(m1) = s] ≤ eϵ · Pr[f(m2) = s]

Notice the similarities between these definitions:

• In both cases, the definitions quantify over all pairs of inputs (i.e., initial
states) that are related in a way that reflects what we are trying to protect. For
noninterference, the relation does this by only constraining the low-security
variables, so that the final state is indistinguishable regardless of the initial
high-security variables. For differential privacy, the neighbor relation works
similarly by letting one individual’s data take an arbitrary value, and fixing
the rest of the input.

• The right-hand side of the implication in each case describes the sort of changes
that inputs, and more precisely inputs described by the left-hand side, are al-
lowed to cause. Noninterference rules out any changes to low-security vari-
ables, whereas differential privacy places limits on the probability of varia-
tion in the response.

Viewed this way, differential privacy is a property which states that the influ-
ence of individual indices on f ’s response should remain low, so that responses
computed under neighboring inputs are “almost” indistinguishable. This is the
essential property that allows for plausible deniability and protection from harm,
and the core of differential privacy’s strong guarantees.

Recall also that we were able to prove that programs satisfy noninterference,
even to the point of designing type systems that simplify the task of writing non-
interferent programs, and can be checked efficiently. Given the similarity between
these definitions, it should not be too surprising that we can also prove program’s
adherence to differential privacy. This is part of the appeal of using the definition
in practice: it provides a crisp mathematical formulation of what it means to be
private, that can be proved on real computations.

3.2 Proving differential privacy: randomized response

Now let us go back to our example of randomized response. Does it satisfy differ-
ential privacy? Let us keep things simple and assume that F is the identity function
that just returns the contents of m[0], p = 1/2 and all variables and memory cells

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.9

hold values in the set {0, 1}. This corresponds to the following program:

f(m) =
b := flip(p)
if b = 1 then
out := m[0]
else

out := flip(p)

It turns out that this does indeed satisfy ϵ-differential privacy. Normally, we would
do our calculation and then find a tight ϵ, but let’s anticipate it.

Theorem 3 f satisfies ln(3)-differential privacy when p = 1/2 and m[0] ∈ {0, 1}.

Proof: Recall that we need to show that the following inequality holds over all
pairs of neighboring inputs and all outputs s:

Pr[f(m1) = s] ≤ eϵ · Pr[f(m2) = s]

Because this instantiation of randomized response only depends on the contents of
a single memory cell, i.e. m[0], There are two possible configurations of neighbor-
ing inputs: m1[0] = 1,m2[0] = 0 and m1[0] = 0,m2[0] = 1.

Case: m1[0] = 1,m2[0] = 0. The inequality has to be satisfied for all s, that is, for
s = 1 and s = 0.

Subcase: s = 1. Then we calculate the left-hand side

Pr[f(m1) = 1] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 1]
= p+ (1− p)p = 3/4

and the right-hand side

Pr[f(m2) = 1] = Pr[b = 0 ∧ flip(p) = 1]
= (1− p)p = 1/4

For the inequality to hold we have to have

Pr[f(m1) = 1] = 3/4 ≤ eϵ · 1/4 = eϵ · Pr[f(m2) = 1]

We see 3 ≤ eϵ and therefore ϵ = ln(3) is a tight bound.

Subcase: s = 0. Again, we calculate both sides:

Pr[f(m1) = 0] = Pr[b = 0 ∧ flip(p) = 0]
= (1− p)2 = 1/4

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.10

And for the other side:

Pr[f(m2) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 0]
= p+ (1− p)(1− p) = 3/4

Summarizing

Pr[f(m1) = 0] = 1/4 ≤ eϵ · 3/4 = eϵ · Pr[f(m2) = 0]

so 1/3 ≤ eϵ, which is satisfied for any ϵ ≥ 0.

Case: m1[0] = 0,m2[0] = 1. In the case where p = 1/2 this turns out to be symmet-
ric to the previous case.

Subcase: s = 1.

Pr[f(m1) = 1] = Pr[b = 0 ∧ flip(p) = 1] = (1− p)p = 1/4
Pr[f(m2) = 1] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 1]

= p+ (1− p)p = 3/4

Subcase: s = 0.

Pr[f(m1) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 0]
= p+ (1− p)p = 3/4

Pr[f(m2) = 1] = Pr[b = 0 ∧ flip(p) = 0]
= (1− p)(1− p) = 3/4

So indeed the probabilities are simply inverted in this case

□

Now what would we expect for p = 1/4? We go into the branch where we
reveal m[0] less frequently, instead returning a random (if biased) answer instead.
This would indicate that the privacy budget could be less than ln(3). Conversely, if
p = 3/4 we go into the revealing branch with much higher probably, so we would
need a higher privacy budget to be allowed to do that.

If we did our math right, there would be four inequalities that should be satis-
fied for general p:

p+ (1− p)p
(1− p)p

≤ eϵ

(1− p)(1− p)
p+ (1− p)(1− p)

≤ eϵ

(1− p)p
p+ (1− p)p

≤ eϵ

p+ (1− p)p
(1− p)(1− p)

≤ eϵ

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.11

The middle two fractions are less than 1 and are therefore automatically satisfied.
Plugging in p = 1/4, we get ϵ ≥ ln(7/3), which is indeed less than ln(3). Plug-

ging in p = 3/4, we get ϵ ≥ ln(15), which is indeed greater than ln(3). One could
also imagine inverting the question: given a certain privacy budget, can we choose
a suitable p to make the function comply?

4 Differentially Private Programming

In the preceding section we used an informal proof of adherence to ϵ-differential
privacy even though the primary object of analysis in this theorem was a program.
It is possible to prove this theorem more formally, but to do so we would need
a formal semantics for the programming language with random elements (e.g.,
flip(p)), and logic for expressing properties of this language like dynamic logic,
and sound proof rules for that logic. Such things exist, and also remain an active
area of research, but are beyond the scope of this class.

Alternatively, we could go the route of information flow and devise a type sys-
tem so that type-checking a program would guarantee that it satisfies ϵ-differential
privacy. Perhaps surprisingly, this is also possible! There is a sequence of two
supremely elegant papers [Reed and Pierce, 2010, Gaboardi et al., 2013] that lay
out such type systems, which also provide useful techniques for composing differ-
entially private computations in various ways.

References

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarawate. Differentially
private empirical risk minimization. Journal of Machine Learning Research, 12:
1069–1109, 2011.

Cynthia Dwork. Differential privacy. In 33rd International Colloquium on Automata,
Languages, and Programming, II (ICALP 2006), pages 1–12, Venice, Italy, July 2006.
Springer LNCS 4052.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential pri-
vacy. Foundations and Trends in Theoretical Computer Science, 9(3–4):211–407, Au-
gust 2014.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized
aggregatable privacy-preserving ordinal response. In Conference on Computer
and Communications Security (CCS 2014), pages 1054–1067, Scottsdale, Arizana,
November 2014. ACM.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. Linear dependent types for differential privacy. In Roberto Giacobazzi

LECTURE NOTES DECEMBER 6, 2024

Differential Privacy L22.12

and Radhia Cousot, editors, 40th Symposium on Principles of Programming Lan-
guages (POPL 2013), pages 357–370, Rome, Italy, January 2013. ACM.

Jason Reed and Benjamin C. Pierce. Distances makes the types grow stronger:
A calculus for differential privacy. In P. Hudak and S. Weirich, editors, 15th
International Conference on Functional Programming (ICFP 2010), pages 157–168,
Baltimore, Maryland, September 2010. ACM.

Dennis M. Volpano and Geoffrey Smith. Verifying secrets and relative secrecy. In
M. N. Wegman and T. W. Reps, editors, Symposium on Principles of Programming
Languages, pages 268–276, Boston, Massachusetts, January 2000. ACM.

Stanley Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

LECTURE NOTES DECEMBER 6, 2024

	Introduction
	Propositional Formulas
	Simple Sequents
	Right and Left Rules
	Implication
	Disjunction
	Sequents with Multiple Succedents
	Properties of Inference Systems
	Proving Soundness
	Inversion
	Termination
	Completeness
	Addendum: Negation
	Introduction
	Countermodels
	Safety and Liveness
	Dynamic Logic: A Logic with Programs
	Conditionals and Assignments
	Sequential Composition
	Rule Summary So Far
	Introduction
	Loops
	Semantics of Expressions
	Semantics of Programs
	Semantics of Formulas
	Quantification and Substitution
	Rules versus Axioms
	Some Axioms for Dynamic Logic
	Summary
	Introduction
	Unsafe Programs
	Reasoning about Safety
	A Sample Proof of Safety
	A Generic Unsafe Command
	A Theorem about Safety
	Introduction
	Writing and Reading Memory
	Reasoning about Memory
	A Small Example of Memory Safety
	Guards
	Sandboxing
	Summary
	Introduction
	Weakest Liberal Precondition
	Programs Without Loops
	Loops
	A Loop Example
	White Box
	Summary
	Introduction
	Analysis in Evaluation Order
	Inference Rules Defining Algorithms
	Rules for Symbolic Evaluation
	Assertions, Tests and Loops
	Control Flow Graphs
	Bounded Symbolic Evaluation
	Summary
	Introduction
	Evaluation
	Def/Use Analysis
	Generating a Verification Condition
	Introduction
	Information Flow, Informally
	Tracking Security Levels
	A Lattice of Security Levels
	Tracking Security Levels, Continued
	Taint Analysis
	Indirect Flows
	Introduction
	Noninterference
	Read Levels of Expressions and Formulas
	Soundness of the Information Flow Type System
	Summary: Information Flow Type System
	Introduction
	Information Flow in Dynamic Logic
	Checking PINs
	Explicit Declassification
	Introduction
	Termination-Sensitive Noninterference
	Sharpening the Information Flow Type System
	Further Discussion
	Introduction
	Some Simple Timing Attacks
	Time-Sensitive Noninterference
	Evaluation with Time
	A Type System for Constant-Time Computation
	Randomization
	Introduction
	Affirmations
	Constructive Logic
	Affirmations
	Some Axioms
	An Example of Authorization
	Summary
	Introduction
	Inversion
	Inversion for Affirmation
	Focusing
	Introduction
	Proof Terms for Intuitionistic Propositional Logic
	Proof Terms for Affirmations
	Example Revisited
	Introduction
	Digital Certificates & Certificate Authorities
	Formalizing certificates and trust
	Example Revisited
	Failure modes

	Public key infrastructure
	Centralized CA
	Delegated trust and hierarchical CAs
	Web of trust
	Dealing with certificate compromise

	Introduction
	Functional Programs are Expressions
	Parametric Polymorphism is Information Flow
	A Second Attempt: Tagging Types
	Syntax and Typing
	Noninterference
	Bonus: Existential Quantification, or Declassification

	Remarks
	Introduction
	Quantifying Uncertainty
	Quantifying a Tradeoff

	Differential Privacy
	Interpreting the Definition
	Proving differential privacy: randomized response

	Differentially Private Programming

