
Assignment 3
Proving Safety

Sample Solution

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Due Wednesday, September 25, 2024
75 points

Note that this is a sample solution! There are often multiple correct ways to solve a problem and we
do not try to comprehensive in any way.

1 Semantic Equivalence [20 points]

In the previous homework we proved program equivalence using the inference rules of the se-
quent calculus for dynamic logic. For programs that use while this is difficult or impossible with
the tools we have so far, since our axiom for while is only an implication (not a bi-implication)
and, consequently, only corresponds to a right rule ([while]R) in the sequent calculus and not a
left rule.

Task 1 (20 points) Consider the two formulas

[while ⊤ assert ⊤]Q

and
[test ⊥]Q

Prove that they are semantically equivalent, that is, in any state ω, one is true if and only if the other
is. For the reasons explained above, you should do this using the definition of ω |= P and other
semantic definitions such as ωJαKν and ωJαK .

Both of these are valid, no matter what Q is, as shown below. So both are equivalent to ⊤
and therefore to each other.

|= [while ⊤assert ⊤]Q

For any ω we have ω |= [while ⊤ assert ⊤]Q because (1) there is no poststate ν such
that ωJwhile ⊤ assert ⊤Kν and (2) not Jwhile ⊤assert ⊤K .

To conclude (1), we prove by induction on n that ωJwhile ⊤ assert ⊤Knν is impossible.
In the case of n = 0, that is because ω |= ⊤, but ω ̸|= ⊤ is required. In the case of n > 0 it
follows by induction hypothesis on µJwhile ⊤ assert ⊤Kn−1ν.

ASSIGNMENTS DUE WED SEP 25, 2024

Homework 3 A3.2

To conclude (2), we prove by induction on n that ωJwhile ⊤ assert ⊤Kn is impossible.
For n = 0 it is impossible by definition. For n > 0 there are two clauses (according
to the definition on page L5.4). For the first, we find that ωJassert ⊤K is impossible
(by definition and ω ⊢ ⊤). For the second, we appeal to the induction hypothesis for
µJwhile P αKn−1

|= [test ⊥]Q

For any ω we have ω |= [test ⊥]Q because (1) there is no poststate ν such that ωJtest ⊥Kν
and (2) ωJtest ⊥K is false. Both of these follow immediately by definition (see page
L6.5).

2 Safety of Output [55 points]

In this problem we consider a more complex safety policy than division by zero or array access
out of bounds. We add three new commands to our language: one to open a stream for writing,
one to print to a stream, and one to close a stream. To keep complexity manageable, we imagine
there is just one stream (e.g., the terminal) that we can open, print to, and close:

Programs α, β ::= . . . | open | print e | close

In this problem we assume this is the only source of unsafe behavior, that is, we exclude division
and memory access from consideration.

As an example, here is a program that prints the numbers 0 to 9.

open ;
i := 0 ;
while (i < 10) {
print i ;
i := i+ 1

} ;
close

We have the following safety conditions:

1. When a program starts to execute, we should assume the stream is closed.

2. When a program finishes, we should verify that the stream is closed.

3. Only when the stream is closed can we open it.

4. Only when the stream is open can we print to it.

5. Only when the stream is open can we close it.

In order to define the meaning of these programs, we introduce a new ghost variable “status” that
is used to track the status of the stream. It is called a ghost variable because it is only introduced
to reason about the safety of the program and may not appear directly in a source program. When
status = 0 the stream is not open, and when status ̸= 0 then the stream is open.

ASSIGNMENTS DUE WED SEP 25, 2024

Homework 3 A3.3

Task 2 (5 pts) The sample program above should be safe. State each of the following (by necessity
using the ghost variable status):

(a) The precondition required for its safety (see item 1)

(b) The postcondition required for its safety (see item 2)

(c) The loop invariant needed to prove safety

(a) status = 0

(b) status = 0

(c) status ̸= 0

In order to model the output of a program, the state now should contain a sequence of val-
ues that have been printed. However, since we are only interested in safety we are content to
approximate the true meaning of a program and ignore the values actually printed.

Task 3 (15 pts) Give definitions for ωJαKν and ωJαK for each of the three new constructs.
Make sure to model the prescribed safety conditions accurately. In other words ωJαK should

be true exactly when the program is unsafe, and no unsafe program should have a poststate.

ωJopenKν iff ω(status) = 0 and ν = ω[status 7→ 1]

ωJprint eKν iff ω(status) ̸= 0 and ν = ω

ωJcloseKν iff ω(status) ̸= 0 and ν = ω[status 7→ 0]

ωJopenK iff ω(status) ̸= 0

ωJprint eK iff ω(status) = 0

ωJcloseK iff ω(status) = 0

Task 4 (15 pts) Give right rules in the sequent calculus for open, print, and close.
You do not need to show left rules or axioms, and you do not need to prove their soundness.

Because the open, print, and close commands don’t explicitly refer to the variable status , we
cannot quite use the same solution we used for assignment and substitute a fresh status ′ for
status to represent the new state of the variable. Since we still need to make sure that prior
information about status does not conflict with its new value we rename any reference to the
old version of the variable which may be in Γ or ∆.

ASSIGNMENTS DUE WED SEP 25, 2024

Homework 3 A3.4

We abbreviate status as s and write s′ for a fresh variable to keep the width of the rules
manageable.

Γ(s) ⊢ s = 0,∆(s) Γ(s′), s ̸= 0 ⊢ Q,∆(s′)

Γ(s) ⊢ [open]Q,∆(s)
[open]Rs′

Γ ⊢ s ̸= 0,∆ Γ ⊢ Q,∆

Γ ⊢ [print e]Q,∆
[print]R

Γ(s) ⊢ s ̸= 0,∆(s) Γ(s′), s = 0 ⊢ Q,∆(s′)

Γ(s) ⊢ [close]Q,∆(s)
[close]Rs′

Task 5 (5 pts) Give a biconditional (iff) axiom for reasoning about print e of the form

[print e]Q ↔ ??

[print e]Q ↔ status ̸= 0 ∧Q

Task 6 (10 pts) Prove the validity of your axiom with respect to the semantics in Task 3.

ω |= [print e]Q (assumption)
not ωJprint eK (from assumption)
ω(status) ̸= 0 (by definition of unsafe semantics)
ω |= status ̸= 0 (ωJstatusK ̸= ωJ0K)
ωJprint eKω (by definition of safe semantics)
ω |= Q (by picking ν = ω in first assumption)
ω |= status ̸= 0 ∧Q (to show; by combining prior results)

ω |= status ̸= 0 ∧Q (assumption)
ωJprint eKν for some ν (assumption)
ν = ω (by definition of safe semantics)
ν |= Q (to show; by combining ω |= Q and ν = ω)
not ωJprint eK (since ω |= status ̸= 0, so we know ω(status) ̸= 0)

Consider the following program schema (with P (i) and R(i) some formulas of pure arithmetic
that may refer to i):

while P (i) {
if R(i) then close else open ;

ASSIGNMENTS DUE WED SEP 25, 2024

Homework 3 A3.5

print i ;
if R(i) then open else close ;
i := i+ 1

}

Task 7 (5 pts) Assume suitable pre- and post-conditions to satisfy item 1 and item 2 in the infor-
mal definition of safety.

State conditions relating P (i) and R(i) that would guarantee safety of this program. They
should be as general as possible (yes, we realize that P (i) = ⊥ guarantees safety regardless of
R(i)).

For all i, P (i) implies not R(i), that is P (i)→¬R(i) is valid.

ASSIGNMENTS DUE WED SEP 25, 2024

	Semantic Equivalence [20 points]
	Safety of Output [55 points]

