
Assignment 4
Information Flow
Sample Solution

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Due Wednesday, October 30, 2024
90 points + 20 points extra credit

Your solution should be handed in as a file hw4.pdf to Gradescope. If at all possible, write
your solutions in LATEX. The handout hw4-safety.zip includes the LATEX sources for Lectures
11 and 12 and the necessary style files which provide some examples for rules, derivations, and
proofs. Because we are one day late to post the assignment, it is due to Wednesday, instead of
Tuesday. You may use up to two late days as usual.

1 Implicit Flows [60 points + 20 points extra credit]

Consider adding a new construct to our language SAFETINY, try α catch β. Note that in
SAFETINY all commands are safe, but we have test P which aborts if P is false. We do not
consider division, memory read/write, or assert. In order to simplify matters further, we also
exclude loops from consideration, but see the extra credit tasks at the end of this problem.

try α catch β is supposed to execute as follows:

1. Execute α in the current state ω

2. If α does not abort, the try/catch construct finishes in the poststate of α

3. If α aborts, we continue by executing β in the prestate ω. In this case, the poststate of β will
be the poststate of try α catch β.

try/catch is not easy to implement efficiently in a compiler since we have to either save the
prestate ω, or track assignments so we can roll back the state when a test fails. As we see in Task 2,
it is not so difficult in an interpreter.

Here are some examples:

eval ω (try test ⊥ catch x := 0) = ω[x 7→ 0]
eval ω (try test ⊤ catch x := 0) = ω
eval ω (try test ⊥ catch test ⊥) aborts
eval ω (try (x := 0 ; try (test x > 0) catch x := 1) catch x := 2) = ω[x 7→ 1]

Task 1 (10 points) Give a semantic definition of ωJtry α catch βKν and test P that models the
intended behavior based on the informal description above. You should model a program that
aborts (and is not caught) as one that has no poststate.

ASSIGNMENTS DUE TUE OCT 29, 2024



Homework 4 A4.2

The definition of test remains unchanged.

ωJtry α catch βKν iff ωJαKν
or (there is no ν such that ωJαKν) and ωJβKν

ωJtest P Kν iff ω |= P and ν = ω

With this understanding, we can update our definition of eval so that it explicitly returns either
a state ν or abort. We show the cases for sequential composition, skip, and assignment.

eval ω (α ; β) = abort if eval ω α = abort
eval ω (α ; β) = abort if eval ω α = µ and eval µ β = abort
eval ω (α ; β) = ν if eval ω α = µ and eval µ β = ν

eval ω (skip) = ω
eval ω (x := e) = ω[x 7→ c] where evalZ ω e = c

Task 2 (15 points) Complete the definition of eval with the cases for conditionals, tests, and try/catch.

eval ω (if P then α else β) = eval ω α if evalB ω P = ⊤
eval ω (if P then α else β) = eval ω β if evalB ω P = ⊥

eval ω (test P ) = ω if evalB ω P = ⊤
eval ω (test P ) = abort if evalB ω P = ⊥

eval ω (try α catch β) = ν if eval ω α = ν
eval ω (try α catch β) = eval ω β if eval ω α = abort

Task 3 (10 points) Conjecture an axiom of equivalence for [try α catch β]Q, or explain briefly
why you believe no such axiom is possible in dynamic logic (as we have constructed it so far).
Note that your axiom only needs to be sound in the language without loops.

There are multiple reasonable conjectures. We choose one using ⟨α⟩⊤ because by definition
that is true if and only if there exists a poststate for α. Conversely, [α]⊥ is true if and only if α
has no poststate.

[try α catch β]Q ↔ (⟨α⟩⊤ → [α]Q) ∧ (¬⟨α⟩⊤→ [β]Q)

We can use the identity ¬⟨α⟩R ↔ [α]¬R to eliminate the diamond if we wish. For example:

[try α catch β]Q ↔ ([α]⊥ ∨ [α]Q) ∧ ([α]⊥→ [β]Q)

Further, if [α]⊥ then also [α]Q, so we can simplify the first conjunct:

[try α catch β]Q ↔ [α]Q ∧ ([α]⊥→ [β]Q)

ASSIGNMENTS DUE TUE OCT 29, 2024



Homework 4 A4.3

One last possibility:

[try α catch β]Q ↔ (¬[α]⊥ ∧ [α]Q) ∨ ([α]⊥ ∧ [β]Q)

We cannot omit ¬[α]⊥ here, since [α]Q will be true if α has not poststate.

Task 4 (5 points) Give an example of a security policy Σ0 and program α0 demonstrating that
test and try/catch create a new possibility for implicit information flow. For this question, you
should work with a security lattice with just two elements H and L with L ⊏ H and the definition
of termination-insensitive noninterference from Lecture 11.

α0 = try (test x > 0 ; y := 1) catch y := 0

with Σ0 = (x : H, y : L).

Task 5 (10 points) Prove that your example from the previous task violates termination-insensitive
noninterference, that is, Σ0 |= α0 secure is not true.

Let
ω1 = (x 7→ 0, y 7→ 17) eval ω1 α0 = (x 7→ 0, y 7→ 0) = ν1
ω2 = (x 7→ 1, y 7→ 17) eval ω2 α0 = (x 7→ 1, y 7→ 1) = ν2

We have Σ0 ⊢ ω1 ≈L ω2 but Σ0 ⊢ ν1 ̸≈L ν2

In order to prevent the implicit flows enabled by try/catch we introduce a new ghost variable
handler into the information flow type system. The security level of handler should be that of the
catch that would be invoked should the current program abort. It should be ⊥ (the least element
of the security lattice) at the beginning of evaluation.

Task 6 (10 points) Give rules for try/catch and test in the information flow type system. You do
not need to prove their soundness.

In a conditional if P then α else β we can raise the level of the pc to that of P . For the
try/catch we don’t have the condition directly available, but we can “guess” it. As long as
the security level of any test remains below that, the resulting code should be secure.

Σ(pc) ⊑ ℓ Σ[handler 7→ ℓ] ⊢ α secure Σ[pc 7→ ℓ] ⊢ β secure

Σ ⊢ try α catch β secure
tryF

Σ ⊢ P : ℓ ℓ ⊑ Σ(handler)

Σ ⊢ test P secure
testF

There are multiple other possibilities that are less permissive. Requiring the level of each
test to be ⊥ (the minimum element of the security lattice) it will be secure, but prevent some
programs that are allowed with the rules above.

ASSIGNMENTS DUE TUE OCT 29, 2024

https://15316-cmu.github.io/2024//lectures/11-infoflow.pdf


Homework 4 A4.4

The remainder of Problem 1 is for extra credit.

In order to support loops, we assume a global bound b on the number of iterations for each while
loop, after which it aborts. For example, with b = 0 the program aborts if it ever attempts to
enter the body of a loop, with b = 1 each loop while P α is equivalent to if P then (α ;
test (¬P )) else skip.

Task 7 (5 bonus points) Give a semantic definition of ωJwhile P αKν that models the intended
behavior of bounded loops based on the informal description above.

Task 8 (5 bonus points) Complete the definition eval by providing a clause for while loops bounded
by b. Feel free to use auxiliary functions.

In order the conjecture suitable axioms in dynamic logic assume that each loop while P α with
loop invariant J is written explicitly as whilebJ P α.

Task 9 (10 bonus points) Conjecture axioms in dynamic logic for whilebJ and try/catch, or ex-
plain why you think that bounded loops and try/catch cannot be axiomatized in the framework
of dynamic logic (as we have constructed it so far).

2 Declassification [30 points]

Consider the formulation of termination-insensitive noninterference in the presence of declassifi-
cation under the two-level security lattice (L ⊏ H).

Assume α contains a single occurrence of declassifyL(e) where x ∈ use e implies
x ̸∈ maydef α.

For such programs we define Σ |= α secure iff
whenever Σ ⊢ ω1 ≈L ω2

and eval ω1 e = eval ω2 e
then Σ ⊢ eval ω1 α ≈L eval ω2 α

Task 10 (20 points) Assume you are given a security policy Σ and a program α that contains a
single occurrence of declassifyL(e) satisfying the use/maydef condition. Show how to construct
a formula R in dynamic logic such that the validity of R implies Σ |= α secure. Your starting point
should be the construction in Section 2 of Lecture 12.

As before, we can encode Σ ⊢ ω1 ≈L ω2 with Q =
∧

Σ(x)=L(x = x′). If that is still true after
executing α ; α′, part of the property is encoded. We also want to ensure that the evaluations of
e in the initial state are equal. We can say this just with e = e′, where e′ is the result of renaming
all variables of e to their primed versions. Since we assume the use/maydef condition, we do
not attempt to capture this. In fact, this would be difficult to do correctly. We then have:

R = (e = e′ ∧
∧

Σ(x)=L

(x = x′)→ [α ; α′]
∧

Σ(x)=L

(x = x′))

ASSIGNMENTS DUE TUE OCT 29, 2024

https://15316-cmu.github.io/2024//lectures/12-declassification.pdf


Homework 4 A4.5

Task 11 (5 points) Give an example policy Σ0 and program α0 that is not secure due to incorrect
use of declassification, that is, the def/mayuse condition is violated. Show the encoding of the
example in dynamic logic and determine whether it is valid. Explain your finding.

An incorrect use of declassification would be

α0 = (x1 := 0 ; y := declassifyL(x1 + x2))

where Σ0 = (x1 : H, x2 : H, y : L). We intend to declassify the sum of x1 and x2, but really we
declassify x2. The corresponding formula

x1 + x2 = x′1 + x′2 ∧ y = y′ → [α0 ; α
′
0] y = y′

is not valid because the weakest precondition

wlp (α0 ; α
′
0) (y = y′) = (0 + x2 = 0 + x′2)

and
x1 + x2 = x′1 + x′2 ∧ y = y′ → x2 = x′2

is not valid. While not necessarily guaranteed by the encoding, the fact that this is not valid
is comforting because it expresses that the programs leaks the value of x2, even though the
declassification was intended only to declassify the sum x1 + x2. It seems that in this and
many other cases (and perhaps in general—I am not sure) the encoding in dynamic logic lets
us reason about exactly what we can deduce from the assumptions of the noninterference
theorem, including the declassified expressions.

Task 12 (5 points) Give an example policy Σ1 and a program α1 that uses declassification and is
secure. Show the encoding of the example in dynamic logic and demonstrate that it is valid. This
is usually done most directly by constructing a weakest precondition, if the formula is in the class
that permits it. You don’t need to show intermediate steps.

If we remove the assignment to x1 we get

α1 = (y := declassifyL(x1 + x2))

with Σ1 = Σ0. Then the formula

x1 + x2 = x′1 + x′2 ∧ y = y′ → [α1 ; α
′
1] y = y′

is valid. We calculate

wlp [α1 ; α
′
1] (y = y′) = (x1 + x2 = x′1 + x′2)

This means we have to verify that

(x1 + x2 = x′1 + x′2 ∧ y = y′)→ x1 + x2 = x′1 + x′2

is valid, which it is.

ASSIGNMENTS DUE TUE OCT 29, 2024


	Implicit Flows [60 points + 20 points extra credit]
	Declassification [30 points]

