
Assignment 5
Proof-Carrying Authorization

Sample Solution

15-316: Software Foundations of Security & Privacy
Frank Pfenning

Due Wednesday, November 20, 2024
85 points

Your solution should be handed in as a file hw5.pdf to Gradescope. If at all possible, write
your solutions in LATEX. The handout hw5-pca.zip includes the LATEX sources for some lectures
and the necessary style files which provide some examples for rules, derivations, and proofs.
Because we are posting it on Wednesday, it is also due on Wednesday. You may use up to two late
days as usual.

1 Authorization Logic [25 points]

For each of the following, either give a derivation in the sequent calculus or give a counterexample.
In the latter case, use p and q as atomic formulas and demonstrate that the counterexample is not
derivable.

Task 1 (5 pts) (A says P ) ∧ (A says Q) ⊢ A says (P ∧Q)

P,Q ⊢ P
id

P,Q ⊢ Q
id

P,Q ⊢ P ∧Q
∧R

P,Q ⊢ A aff (P ∧Q)
aff

P,A says Q ⊢ A aff (P ∧Q)
saysL

A says P,A says Q ⊢ A aff (P ∧Q)
saysL

(A says P ) ∧ (A says Q) ⊢ A aff (P ∧Q)
∧L

(A says P ) ∧ (A says Q) ⊢ A says (P ∧Q)
saysR

Task 2 (5 pts) A says (P ∧Q) ⊢ (A says P ) ∧ (A says Q)

ASSIGNMENTS DUE WED NOV 20, 2024



Homework 5 A5.2

P,Q ⊢ P
id

P ∧Q ⊢ P
∧L

P ∧Q ⊢ A aff P
aff

A says (P ∧Q) ⊢ A aff P
saysL

A says (P ∧Q) ⊢ A says P
saysR

P,Q ⊢ Q
id

P ∧Q ⊢ Q
∧L

P ∧Q ⊢ A aff Q
aff

A says (P ∧Q) ⊢ A aff Q
saysL

A says (P ∧Q) ⊢ A says Q
saysR

A says (P ∧Q) ⊢ (A says P ) ∧ (A says Q)
∧R

Task 3 (5 pts) (A says P ) ∨ (A says Q) ⊢ A says (P ∨Q)

P ⊢ P
id

P ⊢ P ∨Q
∨L1

P ⊢ A aff (P ∨Q)
aff

A says P ⊢ A aff (P ∨Q)
saysL

A says P ⊢ A says (P ∨Q)
saysR

Q ⊢ Q
id

Q ⊢ P ∨Q
∨L2

Q ⊢ A aff (P ∨Q)
aff

A says Q ⊢ A aff (P ∨Q)
saysL

A says Q ⊢ A says (P ∨Q)
saysR

(A says P ) ∨ (A says Q) ⊢ A says (P ∨Q)
∨L

Task 4 (5 pts) A says (P ∨Q) ⊢ (A says P ) ∨ (A says Q)

This is not derivable. We demonstrate this using two concrete atomic formulas p and q. Be-
cause saysL is not applicable, the only possibilities are ∨R1 and ∨R2. We show one; the other
is symmetric. Each step below is either the only possible one, or uses an invertible rule. Since
q ⊢ p is not derivable, the original sequent at the bottom is also not derivable.

p ⊢ p
id

p ⊢ A aff p
aff

XXX
q ⊢ p

q ⊢ A aff p
aff

p ∨ q ⊢ A aff p
∨L

A says (p ∨ q) ⊢ A aff p
saysL

A says (p ∨ q) ⊢ A says p
saysR

A says (p ∨ q) ⊢ (A says p) ∨ (A says q)
∨R1

Task 5 (5 pts) A says ∀x. P (x) ⊢ ∀x.A says P (x)

ASSIGNMENTS DUE WED NOV 20, 2024



Homework 5 A5.3

P (y) ⊢ P (y)
id

∀x. P (x) ⊢ P (y)
∀L

∀x. P (x) ⊢ A aff P (y)
aff

A says ∀x. P (x) ⊢ A aff P (y)
saysL

A says ∀x. P (x) ⊢ A says P (y)
saysR

A says ∀x. P (x) ⊢ ∀x.A says P (x)
∀Ry

2 Trust [30 points]

We informally define that A trusts B if whenever B affirms P then A also affirms P . Unfortu-
nately, we cannot express this directly in our authorization logic because the right-hand side of
the definition

A trusts B ≜ ∀P.B says P →A says P

quantifies over all possible propositions. In authorization logic, quantifiers only range over prin-
cipals and constants from some finite domain (like rooms or files or homework assignments, etc.).

Instead we assume that there is a fixed preorder of principals where A ≤ B means that A trusts
B. We assume that this relation is reflexive and transitive.

Task 6 (15 pts) Define rules in the sequent calculus for authorization logic that incorporate the
trust relationship. Your premises may directly refer to A ≤ B for principals A and B. You may
modify existing rules saysR, saysL, and aff , and you may add new rules. Other inference rules
should remain unchanged.

We choose to modify the existing rules, appealing to A ≤ B. Since the right rule is invertible,
it should not involve any choice so we stay within A’s perspective. The left rule cannot always
be applied, and so involves a choice. If A trusts B, then A accepts everything that B says as
true.

Γ ⊢ A aff P

Γ ⊢ A says P
saysR

A ≤ B Γ, P ⊢ A aff Q

Γ, B says P ⊢ A aff Q
saysL

Γ ⊢ P

Γ ⊢ A aff P
aff

We could also (slightly redundantly, I believe but have not proved) change the right rule,
which is also a perfectly good solution.

A ≤ B Γ ⊢ B aff P

Γ ⊢ A says P
saysR

Task 7 (5 pts) Prove A says P ∧B says Q ⊢ A says (P ∧Q) in your system, provided A ≤ B.

ASSIGNMENTS DUE WED NOV 20, 2024



Homework 5 A5.4

A ≤ A

A ≤ B

P,Q ⊢ P
id

P,Q ⊢ Q
id

P,Q ⊢ P ∧Q
∧R

P,Q ⊢ A aff (P ∧Q)
aff

P,B says Q ⊢ A aff (P ∧Q)
saysL

A says P,B says Q ⊢ A aff (P ∧Q)
saysL

A says P ∧B says Q ⊢ A aff (P ∧Q)
∧L

A says P ∧B says Q ⊢ A says (P ∧Q)
saysR

Task 8 (10 pts) Give a counterexample to A says P ∧B says Q ⊢ B says (P ∧Q) provided B ̸≤ A.
You should be able to use your rules to prove that the counterexample cannot be derived. If not,
explain for partial credit why it is difficult or impossible.

The counterexample just uses atomic formulas p and q and shows that the proposed formula
is not derivable. First, we apply rules that are invertible, or the only application ones.

B ≤ B

...
A says p, q ⊢ B aff (p ∧ q)

A says p,B says q ⊢ B aff (p ∧ q)
saysL

A says p ∧B says q ⊢ B aff (p ∧ q)
∧L

A says p ∧B says q ⊢ B says (p ∧ q)
saysR

At this point, saysL is not applicable since B does not trust A (by assumption B ̸≤ A). So only
the aff rule applies, and we fail after a few more steps.

XXX
A says p, q ⊢ p A says p, q ⊢ q

id

A says p, q ⊢ p ∧ q
∧R

A says p, q ⊢ B aff (p ∧ q)
aff

At the underivable sequent, so rule applies.

3 Groups and Access Control [30 points]

In the AFS file system used on the linux.andrew machines there are two kinds of principals:
individuals (identified by their Andrew id) and groups (identified by a name distinct from an
individual id). We formalize a variant of the Andrew file system access control with the following
policies:

ASSIGNMENTS DUE WED NOV 20, 2024



Homework 5 A5.5

(i) Any principal may create a new group they own simply by saying so. Assume that adding
such an affirmation to the policy would fail if the group already exists.

(ii) The owner of a group is always one of its members.

(iii) Only the owner of a group may add members to it. We are not concerned with revoking
group membership.

(iv) The owner of a file may grant a principal read or write access simply by saying so.

(v) If a group has read or write access to a file, each member of the group has read or write
access, respectively, to the file.

In order to formalize this policy in authorization logic, we use the following vocabulary:

• Principals A,B,C, . . . could denote an individual or a group.

• Groups G, . . . if we know a principal must be a group.

• admin . The principal who administers policy, affirming rules for groups and access control.
Depending on the configuration, admin could be a group or an individual.

• Mode M , which is either read or write .

• File names F .

• ownsGroup(A,G). Principal A owns group G.

• ownsFile(A,F ). Principal A owns file F .

• member(A,G). Principal A is a member of group G.

• mayOpen(A,F,M). Principal A may open file F in mode M .

Task 9 (10 points) Write out the access control policy explained above in authorization logic. La-
bel your affirmations so they can be used in proof terms.

v1 : admin says ∀A.A says ownsGroup(A,G)→ ownsGroup(A,G)
v2 : admin says ∀A. ∀G. ownsGroup(A,G)→member(A,G)
v3 : admin says ∀A. ∀B. ∀G. ownsGroup(A,G)→A says member(B,G)→member(B,G)
v4 : admin says ∀A.∀B. ∀F.∀M.

ownsFile(A,F )→A says mayOpen(B,F,M)→mayOpen(B,F,M)
v5 : admin says ∀G. ∀F.∀M. ∀A.mayOpen(G,F,M)→member(A,G)→mayOpen(A,F,M)

Task 10 (10 points) Write out the necessary affirmations by fp or admin to express each of the
following. Label your affirmations so they can be used in proof terms.

1. Individual fp owns group 316 ta and files 316 roster and 316 grades .

2. Individuals myra and hemant are members of 316 ta .

ASSIGNMENTS DUE WED NOV 20, 2024



Homework 5 A5.6

3. Group 316 ta may read file 316 roster and read and write file 316 grades .

w1 : fp says ownsGroup(fp, 316 ta)
∧ admin says (ownsFile(fp, 316 roster) ∧ ownsFile(fp, 316 grades))

w2 : fp says (member(myra, 316 ta) ∧member(hemant , 316 ta))
w3 : admin says (mayOpen(316 ta, 316 roster , read)

∧mayOpen(316 ta, 316 grades, read)
∧mayOpen(316 ta, 316 grades,write))

Task 11 (10 points) Write out a proof term (as defined in Lecture 17) showing myra may write file
316 grades . You should use labels from the affirmations in the two previous tasks.

We put term arguments to proofs in [brackets], as in the concrete syntax for PCA in Lab 3. We
also record a couple of formulas in comments, for readability.

{
let {x3}admin = v3 in
let y1 = x3[fp][myra][316 ta](w1.π1){let {z}fp = w2 in z.π1}fp in % : member(myra, 316 ta)
let {y3}admin = w3 in
let y4 = y3.π2 % : mayOpen(316 ta, 316 grades,write)
let {x5}admin = v5 in
x5[316 ta][316 grades][write][myra] y4 y1

}admin

:
admin says mayOpen(myra, 316 grades,write))

ASSIGNMENTS DUE WED NOV 20, 2024

https://15316-cmu.github.io/2024//lectures/17-proofrep.pdf

	Authorization Logic [25 points]
	Trust [30 points]
	Groups and Access Control [30 points]

