
Homework 1
Propositional Sequent Calculus

15-316: Software Foundations of Security & Privacy

Due Tuesday, January 27, 2026
60 points

Your solution should be handed in as file hw1.pdf to Gradescope. If at all possible, write
your solution in LATEX. The handout hw1-proof.zip includes the LATEX sources for Lecture 2
(02-prop.tex) and the necessary style files which provide some examples for rules, derivations,
and proofs.

1 Rule Design (40 points)

In this problem we ask you to give right and left sequent calculus rules for some logical constants
and a new connective. Whatever rules you give should preserve all the good properties of the
sequent calculus for propositional logic, that is:

(a) They should be sound.

(b) They should be invertible.

(c) All their premises should be smaller than the conclusion, when counting the number of logical
connectives and constants ⊤ and ⊥ in a sequent.

The last two items combine to entail completeness and decidability. You only need to prove these
properties when explicitly asked but your rules should nonetheless satisfy them. When you
do write out proofs, please follow the template for →L (soundness, page L3, Section 9) and ∨R
(invertibility, page L3, Section 10) in the lecture notes to make them easy for us to grade.

Task 1 (5 points) Give right and left rules for the logical constant ⊤ (truth).

Task 2 (5 points) Give right and left rules for the logical constant ⊥ (falsehood).

We define a new connective F ∧G by the following truth table.

F G F ∧G

⊤ ⊤ ⊥
⊤ ⊥ ⊤
⊥ ⊤ ⊤
⊥ ⊥ ⊤

In the remainder of this problem we ask you to give right and left rules for this new connective.
These rules should preserve all the good properties listed at the beginning of the problem.

HOMEWORKS DUE TUE JAN 27, 2026



Homework 1 HW1.2

Task 3 (5 points) Give the right rule or rules for ∧.

Task 4 (5 points) Prove your right rule(s) are sound.

Task 5 (5 points) Prove your right rule(s) are invertible.

Task 6 (5 points) Give the left rule or rules for ∧.

Task 7 (5 points) Prove your left rule(s) are sound.

Task 8 (5 points) Prove your left rule(s) are invertible.

2 Arbitrary Assignment (20 points)

Sometimes we can make assumptions about a variable whose specific value is unknown when we
are reasoning about a program. For example, we might write a program that accepts alphanumeric
user input, so we know which subset of characters the input could contain. In this problem, we
will explore how to do this in dynamic logic.

Task 9 (5) Extend the language discussed in lecture by defining the semantics of a constrained assignment
command, x :=Q(x).

Informally, this command should assign an arbitrary value to x that satisfies the formula Q(x). We
use the notation Q(x) means that Q is a formula with a free variable x. For example, after running
x := x > y, the variable x could be assigned any integer greater than y in the current state. If Q(x)
is not satisfiable, e.g. if Q(x) is equivalent to x < 0 ∧ x > 0, then the command should not enter
any final state (i.e., should not terminate).

Task 10 (5) Design an axiom that allows you to reason about box modalities around this form of assign-
ment:

[x :=Q(x)]p(x) ↔ . . .

The right side of this equivalence should not contain a box or diamond modality.

Task 11 (5) Prove that your axiom from Task 2 is valid using your semantics from Task 1.

Task 12 (5) Based on your axiom, propose left and right proof rules for the arbitrary assignment statement.

HOMEWORKS DUE TUE JAN 27, 2026


	Rule Design (40 points)
	Arbitrary Assignment (20 points)

