Assignment 2
Dynamic Logic

15-316: Software Foundations of Security & Privacy

Due Tue, Feb 3, 2026
75 points

Your solution should be handed in as file hw2 . pdf to Gradescope. If at all possible, write your
solution in KTEX. The handout hw2-d1.zip includes the ETEX sources for Lectures 3 and 4 and
the necessary style files which provide some examples for rules, derivations, and proofs.

1 Abort (20 points)

In this problem we consider adding a new program abort to the language already containing
assert P (that is, unsafe behavior). The command abort represents an immediate runtime error
or crash: it is always unsafe and it has no poststate.

Task 1 (2 pts) Give a semantic definition of w[abort]v.
Task 2 (2 pts) Give a semantic definition of w[abort]s.

Task 3 (2 pts) Give a valid axiom characterizing abort in the form [abort]Q <> ??. Your task is to
fill in “7?”. You do not need to prove the validity of your axiom.

Task 4 (4 pts) Assuming the validity of your axiom, write out right (jabort|R) and left ([abort]L)
rules for abort in the sequent calculus.

Task 5 (5 pts) Using the right and left rules for sequential composition ([;]R and [;]L) and your
own rules from the previous task, prove that

-+ [abort ; a]Q «+ [abort]|Q

Do not use a semantic argument. You should provide two sequent derivations, one for [abort ;
a]@ — [abort]Q and another for [abort]Q — [abort ; o]Q.

Task 6 (5 pts) State whether [a; abort]Q < [abort]Q. If it is, then provide a sequent derivation

proving it like in Task 5. If it isn’t, then briefly explain why, and provide a concrete program o that
serves as a counterexample, i.e. and « such that [~ [a; abort]|Q < [abort]Q.

ASSIGNMENTS DUE TUE, FEB 3, 2026

Homework 2 A2.2

2 For Loops (55 points)

The general form of while loops and the absence of explicitly given loop invariants can make it
difficult to prove safety properties. In this problem you will consider for loops that have a more
restricted pattern of iteration, possibly making it easier to prove safety.

We give an informal description of our kind of for loops and your task will be to formalize
and prove some properties of it. We use the syntax

for 0 <7< ndou«

The loop body o may depend on the variables i and n (which must be different variables), but «
may not assign to ¢ or n. You should assume these properties are checked by the parser and your
answers below can depend on them.

The for loop above executes as follows:

1. If n < 0, the construct is considered unsafe.
2. Execute afori =0,1,...,n — 1 in this order. If n = 0 then « is not executed at all.
3. After the loop exits, ¢ should be equal to n.

Task 7 (5 pts) Using for (and not while), write a program to compute the sum 1 +3 +5+--- +
(2k + 1) under the precondition k£ > 0.

Task 8 (5 pts) Define w[for 0 < i < n do «a]v inductively, analogously to the way we defined the
meaning of w[while P afv.

Task 9 (5 pts) Define w[for 0 < i < n do «af4 inductively, analogously to the way we defined the
meaning of w[while P o] ;.

Task 10 (20 pts) Give a right rule [for|R for [for 0 < i < n do a|Q(7) in analogy to our proof rule
[while|R.

You should allow for an arbitrary loop invariant J (%) in the premises, analogously to [while|R.
Your rule should incorporate assumptions about 7 that hold for all safe for loops so they don’t
need to be expressed explicitly in .J every time the proof rule is used.

Furthermore, the only explicit program properties in your premises should be for «, although
formulas do not need to get smaller.

Task 11 (15 pts) Prove the correctness of the following for loop using your rule from the previous
task. Explicitly state the loop invariant J you used.

n>0,a=0,b=1F [oddsum](b=2x*n+1)
where “oddsum” is the program (which computes the sum of the first n odd numbers)
for0<i<ndo{a:=a+0b;b:=b+2}

For space reasons, state the proof of each premise of your [for|R rule separately, but make it clear
which proof is of which premise. You do not need to justify any sequent of pure arithmetic (that
is, not containing any programs), but of course such sequents must be valid and you should check
that to your own satisfaction.

Task 12 (5 pts) If possible, provide a translation of while P « into our language without while
(but with for) with the same meaning (which you do not need to prove). If you believe it is not
possible, explain briefly why you think so.

ASSIGNMENTS DUE TUE, FEB 3, 2026

	Abort (20 points)
	For Loops (55 points)

