
Assignment 3: The Highs and Lows of Information Flow
15-316 Software Foundations of Security and Privacy

Due: 11:59pm, Wednesday 10/30/19
Total Points: 50

1. Flow types (15 points).

Consider the following program.

if(a = b) {

c := 0

d := d + 1

} else {

d := c � e

}

b := c

Part 1 (5 points). Identify a minimal policy Γ under which this program type checks in the infor-
mation flow type system described in lecture. The policy that you form must assign Γpaq � H, and be
minimal in the sense that it assigns as few variables the label H as possible while still type checking.

Part 2 (10 points). Use the rules of the information flow type system to show that the program
typechecks under your policy.

2. Exclusive interference (20 points).

Consider the following program under the policy Γ � pa : H, b : H, c : Lq.

if(a > 0) {

if(b > 0) {

c := 0;

} else {

c := 1;

}

} else {

if(b > 0) {

c := 1;

} else {

c := 0;

}

}

Part 1 (5 points). Show that this program does not satisfy noninterference by providing a pair of
inputs pa, b, cq and pa1, b1, c1q that violate the formal definition given in lecture.

Part 2 (10 points). Although this program does not satisfy noninterference, does it leak any infor-
mation about the H variables a and b to an observer who sees the initial and final values of c? Describe
the feasible set of initial values of a, b to justify your answer.



Part 3 (5 points). Building on the insights gained in the previous parts of this question, suppose
that we propose a declassification rule for exclusive-or terms. (DeclassXor) below says that when e, ẽ
take Boolean (0, 1) values, then their exclusive-or can safely be leaked to the bottom security label.

(DeclassXor)
Γ $ e : `1 Γ $ ẽ : `2 e, ẽ evaluate to either t0, 1u

Γ $ e` ẽ : K

Explain why this may be a justifiable rule to use in terms of the uncertainty remaining about e, ẽ. You
may reference points that you have already made in Part 2 of this question.

3. Leveraging interference (15 points).

Consider the following program, under the type context Γ � pa : H, b : L, c : Lq.

if(a < 0) {

if(b < a) c := 0

else c := 1

} else {

if(a < b) c := 0

else c := 1

}

Describe a procedure that leverages the fact that this program does not satisfy non-interference under
Γ to learn the value of the H-typed variable. You can make use of the following assumptions.

• Assume that an attacker can control the values of L-typed variables prior to executing the program,
and observe their value afterwards. They can neither control nor observe H variables at any point.

• �N ¤ a ¤ N for some N whose value is unknown to the attacker.

• Finally, the attacker can run the program with different L inputs any number of times, and the H

input will remain the same.

How many times does the attacker need to run the program using your procedure to learn a?


