
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Automated Safety-Checking Strategies

Matt Fredrikson

Carnegie Mellon University
Lecture 6

1 Introduction & Recap

In the previous lecture we looked into proving that programs satisfy safety properties
given as formulas in the first-order dynamic logic. In particular, we can write contract
properties with precondition P and postconditions Q for a program α as:

P → [α]Q (1)

If this formula is valid, then it means that in every state ω, if ω |= P then after all
terminating runs of α starting in ω the final state ν |= Q.

We then defined the semantics of dynamic logic formulas, so that we can actually
prove the validity of such formulas. However, this is not always such an easy thing to
do because there are an infinite number of initial states to reason about. To address this
we derived a set of axioms that can be used in sequent calculus proofs to reason about
the validity of DL formulas.

([:=]) [x := e]p(x)↔ p(e)

([assert]) [assert(Q)]P ↔ (Q ∧ P )

([if]) [if(Q)α elseβ]P ↔ (Q→ [α]P ) ∧ (¬Q→ [β]P )

([;]) [α;β]P ↔ [α][β]P

([unwind]) [while(Q)α]P ↔ [if(Q) {α; while(Q)α}]P

([unfold]) [while(Q)α]P ↔ (Q→ [α][while(Q)α]P ) ∧ (¬Q→ P )

https://15316-cmu.github.io/index.html


L6.2 Automated Safety-Checking Strategies

Each of these axioms reduces reasoning about formulas involving the box modality
to reasoning about a series of simpler formulas, sometimes not involving modalities
at all. Moreover, the axioms can be “implemented” as a syntactic transformation on
formulas, and so automated by tools. When a sequence of syntactic transformations
results in formulas that don’t contain any box modalities, then the original DL validity
question becomes one of validity of arithmetic formulas. It again becomes possible to
automate by invoking a decision procedure for first-order arithmetic, and many good
ones exist.

This is all very good, but not entirely true in all cases. In particular the axioms
[unwind] and [unfold] for dealing with loops do not actually simplify matters at all.
Applying either of these axioms results in an equivalent DL formula that reasons about
the safety of the first iteration of the loop, and then a DL formula that is a carbon copy
of the original for the remaining iterations.

The way to deal with this properly is to reason about loop invariants, introducing an
axiom that requires us to prove the correctness of the invariant and that it implies the
postcondition. But loop invariants cannot in general be derived automatically, and we
are interested in techniques that can be automated and implemented in tools.

Another way to deal with this is to apply [unwind] or [unfold] repeatedly for a while,
and simply cut the proof off at a certain point. This is equivalent to unrolling the loop
some bounded number of times, and assuming that it will terminate before hitting that
bound. If we can prove safety for all iterations up to the bound, then we know that any
safety violation must occur on longer executions. This is not an ideal solution because
we know nothing about the program’s behavior past the unwinding bound, but it will
certainly give us more assurance than we would have gotten by running a few test
cases.

2 Bounded Model Checking

The principle behind bounded model checking is straightforward. First, pick a bound
N on the execution depth of the program. This bound can refer to the total number
of commands that are executed, or to the number of times loops are unrolled. We will
adopt the latter convention, as it frees us from the potential awkwardness of splitting
compound commands like conditionals and loops partway through their bodies.

Having fixed an upper bound on the execution depth, proceed to check the safety
property P → [α]Q by repeatedly applying [;], [:=], [assert], and [if], as well as the
axioms from the propositinal sequent calculus when necessary. Whenever the proof
reaches a point at which no further progress can be made because all box modalities
contain outermost while(Q)α commands, then apply [unfold] and repeat the above
process on the loop body α. When [unfold] has been applied to each loop N times, then
replace each occurrence of [while(Q)α]P with P . Then proceed to close out the proof
by reducing any remaining obligations to arithmetic formulas and applying the rule Z.

The best way to understand how this works is to see it in action. Let’s start off simple,

15-316 LECTURE NOTES MATT FREDRIKSON



Automated Safety-Checking Strategies L6.3

supposing that we wish to verify the following up to a bound of N = 1:

x 6= 0→ [z := 0; while(y > 0) {if(y%2 = 1) {z := z + x}x := 2 ∗ x; y := y/2}]z 6= 0

To keep things easier to read, we will let α denote the body of the while loop. We
proceed as follows.

x 6= 0, z = 0 ` [while(y > 0)α]z 6= 0
[:=]= x 6= 0 ` [z := 0][while(y > 0)α]z 6= 0
[;] x 6= 0 ` [z := 0; while(y > 0)α]z 6= 0
→R ` x 6= 0→ [z := 0; while(y > 0)α]z 6= 0

We can proceed no further in the proof without applying [unfold]. So we proceed to
unfold the loop, and apply non-loop axioms afterwards until we get stuck again.

[unfold]

∧R

→R
x 6= 0, z = 0, y > 0 ` [α][while(y > 0)α]z 6= 0

x 6= 0, z = 0 ` y > 0→ [α][while(y > 0)α]z 6= 0
→R

x 6= 0, z = 0, y ≤ 0 ` z 6= 0

x 6= 0, z = 0 ` y ≤ 0→ z 6= 0

x 6= 0, z = 0 ` (y > 0→ [α][while(y > 0)α]z 6= 0) ∧ (y ≤ 0→ z 6= 0)

x 6= 0, z = 0 ` [while(y > 0)α]z 6= 0

At this point we can’t help but notice that the branch of our proof with y ≤ 0 in the
assumptions has no path forward. The formula:

x 6= 0 ∧ z = 0 ∧ y ≤ 0→ z 6= 0 (2)

simply is not a valid formula of arithmetic. So, we’ve found a bug. What’s more,
examining the sequent that we are unable to prove:

x 6= 0, z = 0, y ≤ 0 ` z 6= 0 (3)

we can extract more useful information about the bug. In particular the context pro-
vided by our assumptions tells us exactly what conditions of the initial state need to
hold in order for the program to produce a trace that violates the safety property. So if
we take any values of x, y, z that satisfy the assumptions x 6= 0 ∧ z = 0 ∧ y ≤ 0 then we
are guaranteed to “exercise” the bug. Such a set of inputs and its corresponding trace is
called a counterexample to the safety property, and is a useful artifact of model checkers
when debugging programs in practice.

Back to basic axioms. In hindsight, perhaps this is not so impressive because one
of our assumptions is z = 0. We probably should have seen this coming, because the
program begins by initializing z in this way, and will only update it when the loop
body is executed. Perhaps there are more bugs to uncover if we continue with the other
branch of the loop. In the following, let β denote the program x := 2 ∗ x; y := y/2.

1© 2©
[if]x 6= 0, z = 0, y > 0 ` [if(y%2 = 1) {z := z + x}][β][while(y > 0)α]z 6= 0
[;]x 6= 0, z = 0, y > 0 ` [if(y%2 = 1) {z := z + x};β][while(y > 0)α]z 6= 0

15-316 LECTURE NOTES MATT FREDRIKSON



L6.4 Automated Safety-Checking Strategies

The branch of the proof marked 1© continues below.

→R

[;]

[:=]=

[:=]=

[:=]=
x 6= 0, z = 0, y > 0, y%2 = 1, z1 = z + x, x1 = 2 ∗ x, y1 = y/2 ` [while(y1 > 0)α]z1 6= 0

x 6= 0, z = 0, y > 0, y%2 = 1, z1 = z + x, x1 = 2 ∗ x ` [y := y/2][while(y > 0)α]z1 6= 0

x 6= 0, z = 0, y > 0, y%2 = 1, z1 = z + x ` [x := 2 ∗ x][y := y/2][while(y > 0)α]z1 6= 0

x 6= 0, z = 0, y > 0, y%2 = 1 ` [z := z + x][x := 2 ∗ x][y := y/2][while(y > 0)α]z 6= 0

x 6= 0, z = 0, y > 0, y%2 = 1 ` [z := z + x][β][while(y > 0)α]z 6= 0

x 6= 0, z = 0, y > 0 ` y%2 = 1→ [z := z + x][β][while(y > 0)α]z 6= 0

And the branch of the proof marked 2© continues here.

→R

[;]

[:=]=

[:=]=
x 6= 0, z = 0, y > 0, y%2 6= 1, x1 = 2 ∗ x, y1 = y/2 ` [while(y1 > 0)α]z 6= 0

x 6= 0, z = 0, y > 0, y%2 6= 1, x1 = 2 ∗ x ` [y := y/2][while(y > 0)α]z 6= 0

x 6= 0, z = 0, y > 0, y%2 6= 1 ` [x := 2 ∗ x][y := y/2][while(y > 0)α]z 6= 0

x 6= 0, z = 0, y > 0, y%2 6= 1 ` [x := 2 ∗ x; y := y/2][while(y > 0)α]z 6= 0

x 6= 0, z = 0, y > 0 ` y%2 6= 1→ [x := 2 ∗ x; y := y/2][while(y > 0)α]z 6= 0

Now in both branches of the proof, we can’t go any further without applying [unfold].
We initially set our bound to N = 1, and we’ve unrolled the loop exactly one time.

Verification conditions. So we proceed to replace the formula [while(y > 0)α]z 6= 0
with z 6= 0 on both branches, yielding the sequents:

x 6= 0, z = 0, y > 0, y%2 = 1, z1 = z + x, x1 = 2 ∗ x, y1 = y/2 ` z1 6= 0 (4)
x 6= 0, z = 0, y > 0, y%2 6= 1, x1 = 2 ∗ x, y1 = y/2 ` z 6= 0 (5)

The sequents shown in 4 and 5 are our remaining proof obligations: if they are valid,
then we can conclude that the safety property holds on the program traces correspond-
ing to the paths that generated these obligations.

• In the case of 4, the corresponding path enters the while loop (reflected by the
assumption y > 0 in the sequent), enters the body of the conditional (reflected by
the assumption y%2 = 1), and executes the remainder of the loop body stopping
just before iterating again.

• In the case of 5, the corresponding path enters the while loop (y > 0 is still in the
assumptions), skips over the body of the conditional (reflected by y%2 6= 1), and
executes the rest of the loop body stopping prior to another iteration.

Observe that in both cases the proof obligations involve nothing but arithmetic. Re-
calling the meaning of sequents, we can derive arithmetic formulas whose validity im-
plies the correctness of these paths.

x 6= 0 ∧ z = 0 ∧ y > 0 ∧ y%2 = 1 ∧ z1 = z + x ∧ x1 = 2 ∗ x ∧ y1 = y/2→ z1 6= 0 (6)
x 6= 0 ∧ z = 0 ∧ y > 0 ∧ y%2 6= 1 ∧ x1 = 2 ∗ x ∧ y1 = y/2→ z 6= 0 (7)

15-316 LECTURE NOTES MATT FREDRIKSON



Automated Safety-Checking Strategies L6.5

Equations 6 and 7 are called verification conditions. Recall from earlier Equation 2, the
formula whose invalidity told us that the program contains a bug whenever x 6= 0∧z =
0 ∧ y ≤ 0. This was also a verification condition, corresponding to the program path
where the body of the while loop is skipped over immediately leading to termination.

The primary job of a bounded model checker is to generate verification conditions
for each program path within the execution depth bound. This can be done fully auto-
matically, because there is nothing particularly difficult about applying the axioms [;],
[:=]=, [assert], and [if]. As each verification condition is derived, the bounded model
checker consults an automated decision procedure for arithmetic. This often involves
exploiting the duality between satisfiability and validity covered in the second lecture,
as most decision procedures are designed to answer satisfiability queries rather than
validity. But this is not a practical hurdle, as it merely involves negating the verification
condition.

Other first-order theories. So far in this course we have assumed that our programs
operate over “real” unbounded integers. This means that the verification conditions
that we generate are formulas in the first-order theory of integer arithmetic. This theory
is defined by the interpretation given to the constants (0,1,2,. . . ), functions (+,−,×, . . .),
and predicates (≤,=, . . .). We expect that claims of validity for these formulas assume
the usual interpretation for such entities that we are familiar with from arithmetic over
the integers.

Programs written in languages like C do not operate over such integers. Rather, they
operate over machine integers that have bounded with (i.e., 32 or 64 bits), and thus
can only take values from a finite set that can be represented as binary numbers of
the according width. Likewise, functions like addition and subtraction have a different
interpretation over the machine integers, which for example manifest when the result of
an operation is too large or too small to be represented by the width of the architecture
(i.e., overflow and underflow). Machine integers have additional functions such as
bitwise & and |, and shift operators >> and <<.

Just as one can define a first-order theory of “real” integers, it is possible to define
a first-order theory of machine integers, or perhaps floating-point decimal numbers,
by assigning the appropriate interpretations to the constants, functions, and predicates
pertinent to machine integers. Decision procedure developers of course realize this,
and have indeed built support for such theories in widely-used tools. Bounded model
checkers exploit this to faithfully model the semantics of machine arithmetic for lan-
guages like C by generating verification conditions for the first-order theory of machine
integers. Importantly, doing so does not generally entail changes to the verification condition
generator itself, as this is a purely syntactic analysis that does not depend on the inter-
pretation of the underlying term constructors!

Let’s look at a quick example involving machine integer arithmetic to get a sense of
the differences that might arise when reasoning about correctness and safety. Consider
the following program, which diligently checks that the denominator is non-zero before
using it.

15-316 LECTURE NOTES MATT FREDRIKSON



L6.6 Automated Safety-Checking Strategies

1 if(a>0 ∨ b>0) {

2 assert(a+b 6= 0);

3 x := c/(a+b);

4 }

We can check that the safety property corresponding to the assertion holds by rea-
soning about the validity of [if(a > 0 ∨ b > 0)) {assert(a+ b 6= 0);x := c/(a+ b)}]>,
as follows.

[if]

[;]

[:=]

[assert]
` a > 0 ∨ b > 0→ a+ b 6= 0

` a > 0 ∨ b > 0→ [assert(a+ b 6= 0)]>
` a > 0 ∨ b > 0→ [assert(a+ b 6= 0)][x := c/(a+ b)]>
` a > 0 ∨ b > 0→ [assert(a+ b 6= 0);x := c/(a+ b)]>
` [if(a > 0 ∨ b > 0)) {assert(a+ b 6= 0);x := c/(a+ b)}]>

The last step follows because a+ b 6= 0∧> is equivalent to a+ b 6= 0. Now in the theory
of integer arithmetic Z, our verification condition

a > 0 ∨ b > 0→ a+ b 6= 0 (8)

is perfectly valid, and we could close out the proof by simply applying the rule Z. But
in the theory of 32-bit machine integer arithmetic, if a and b are unsigned then Eq. 8 is
not valid. Consider the counterexample a = 232 − 1 = 0xFFFFFFFF = 4294967295 and
b = 1. Then a + b = 0 because the result 4294967296 = 232 is too large to fit in a 32-bit
unsigned integer representation, so the result of the addition wraps around to zero.

From now on, when we want to use the theory of machine integer arithmetic in our
proofs, we will use the rule ZM .

Unwinding assertions. From what we’ve seen so far, bounded model checking gives
us a certain limited kind of assurance about the safety of a program. Let’s break it down
into cases.

1. If the bounded model checker finds a bug, it can report a counterexample. If the
verification condition generator was implemented correctly and the correct the-
ory was used by the decision procedure to discharge the proof obligation leading
to the bug, then we can be sure that there is actually a bug in our program.

How do we know this? Recall the axioms used to generate the verification condi-
tion: [;], [:=]=, [assert], [if], and [unfold]. Each of these is an equivalence reducing
one formula to another, so that if the resulting verification condition is valid, then
the original formula is as well. Likewise, if the VC is not valid, then the original
formula was not either. If this isn’t convincing enough, then most decision proce-
dures will produce a counterexample to the VC, that we can construct an input to
the program with and actually run to observe the bug.

2. If the bounded model checker does not find a bug, then all that we can say with
confidence is that there are no bugs on paths up to the execution depth bound.

15-316 LECTURE NOTES MATT FREDRIKSON



Automated Safety-Checking Strategies L6.7

At least we can say this, again due to the fact that we have proved the axioms of
dynamic logic to be valid equivalences. But importantly, we can’t say that there
are no safety bugs in the program when the model checker fails to find one, as
there could be a bug on some path past the depth bound. Likewise, it could just
as well be the case that there are indeed no such bugs on longer paths, but we
shouldn’t take this view without solid evidence to back it up.

The second case is unfortunate. If the model checker finds no bugs then we will prob-
ably want to follow up to see if we can convince ourselves that there are no safety
violations, but how?

One simple approach that sometimes works in practice is to use an unwinding as-
sertion. As the name suggests, an unwinding assertion is an assertion command that
is added to the program as the bounded model checker applies the [unfold] axiom.
Whenever the depth bound is reached, rather than replacing [while(Q)α]P with P ,
[while(Q)α]P is replaced with [assert(¬Q)]P . This way, verification will only succeed
if the program would have terminated anyway after the bound was reached because
¬Q is true at that point. Let’s look at a short example to illustrate the idea. We will set
a depth bound of N = 2 in the following proof.

[unfold]

∧R

→R

[:=]=

...
x = 2, 0 < x, x1 = x− 1 ` [while(0 < x1)x1 := x1 − 1]x1 = 0

x = 2, 0 < x ` [x := x− 1][while(0 < x)x := x− 1]x = 0

x = 2 ` 0 ≤ x→ [x := x− 1][while(0 < x)x := x− 1]x = 0
ZM

∗
x = 2 ` 0 ≥ x→ x = 0

x = 2 ` (0 ≤ x→ x := x− 1; [while(0 < x)x := x− 1]x = 0) ∧ (0 ≥ x→ x = 0)

x = 2 ` [while(0 < x)x := x− 1]x = 0

We continue with the proof below, as we have run out of space. Let P denote our
assumptions so far x = 2, 0 < x, x1 = x− 1. This time when we apply [unfold], we will
hit the execution bound immediately, and at that point insert the unwinding assertion.

[unfold]

∧R

→R

[:=]=

[assert]
P, 0 < x1, x2 = x1 − 1 ` 0 ≥ x2 ∧ x2 = 0

P, 0 < x1, x2 = x1 − 1 ` [assert(0 ≥ x2)]x2 = 0

P, 0 < x1 ` [x1 := x1 − 1][assert(0 ≥ x1)]x1 = 0

P ` 0 < x1 → [x1 := x1 − 1][assert(0 ≥ x1)]x1 = 0
ZM

∗
P ` 0 ≥ x1 → x1 = 0

P ` (0 < x→ [x1 := x1 − 1][assert(0 ≥ x1)]x1 = 0) ∧ (0 ≥ x1 → x1 = 0)

P ` [while(0 < x1)x1 := x1 − 1]x1 = 0

Now we have reduced the problem to machine arithmetic, leading to the verification
condition

x = 2 ∧ 0 < x ∧ x1 = x− 1 ∧ 0 < x1 ∧ x2 = x1 − 1→ 0 ≥ x2 ∧ x2 = 0 (9)

This is of course valid, and because of the unwinding condition we know that there are
no paths in the program that exceed the execution depth N = 2. From this we conclude
that the program satisfies the safety property on all traces.

15-316 LECTURE NOTES MATT FREDRIKSON



L6.8 Automated Safety-Checking Strategies

3 Symbolic Execution

Recall that when we discussed verification conditions, we saw that the assumptions in
the context of each proof obligation reflect the path covered by that proof obligation.
Also worth noting is that because we used [:=]= rather than [:=], moving assignments
to the assumptions and renaming variables each time, the context also tracks the inter-
mediate state rather explicitly. Consider for example the following derivations.

x = a, y = b ` y = b ∧ x = a
[:=]x = a, y = b ` [z := x]y = b ∧ z = a
[:=]x = a, y = b ` [z := x][x := y]x = b ∧ z = a
[:=]x = a, y = b ` [z := x][x := y][y := z]x = b ∧ y = a
[;],[;]x = a, y = b ` [z := x;x := y; y := z]x = b ∧ y = a

In this case, the verification condition is simply

x = a ∧ y = b→ y = b ∧ x = a (10)

All of the information about the intermediate states that the program entered to achieve
its final result is gone from the condition. On the other hand, using [:=]= to do a similar
derivation:

[;],[;]

[:=]=

[:=]=

[:=]=
x = a, y = b, z1 = x, x1 = y, y1 = z1 ` x1 = b ∧ y1 = a

x = a, y = b, z1 = x, x1 = y ` [y := z1]x1 = b ∧ y = a

x = a, y = b, z1 = x ` [x := y][y := z1]x = b ∧ y = a

x = a, y = b ` [z := x][x := y][y := z]x = b ∧ y = a

x = a, y = b ` [z := x;x := y; y := z]x = b ∧ y = a

Now the verification condition is

x = a ∧ y = b ∧ z1 = x ∧ x1 = y ∧ y1 = z1 → x1 = b ∧ y1 = a (11)

In terms of reasoning about correctness, there is no difference here. Equations 10 and
11 are equivalent. But the context tells us that the most recent “version” of y (i.e. y1)
was updated to take the most recent version of z (i.e. z1), which was in turn updated to
take the initial version of x.

Path formulas. The conjunction of the assumptions calculated in this way is called
the path formula for the corresponding program path behind this derivation. Any feasi-
ble path through a program has a corresponding path formula that is satisfiable. Sym-
bolic execution is a technique that enumerats program paths that may contain safety
violations, generates their path formulas, and checks each formula for satisfiability.
Whenever a path formula is satisfiable, it means that there is at least one trace that
follows that path.

To facilitate enumerating path formulas, symbolic execution first constructs a control
flow graph of the program that reflects all of the paths in the program. Consider the
following program as an example.

15-316 LECTURE NOTES MATT FREDRIKSON



Automated Safety-Checking Strategies L6.9

1 if(a > 0) { x := -2; }

2 if(b < 5) {

3 if(a = 0 ∧ c 6= 0) { y:= 1 }

4 z := 2;

5 }

6 assert(x+y+z 6= 3);

The corresponding control flow graph is as follows.

?a ≤ 0

?a > 0

x := −2

?b < 5

?b ≥ 5
?a = 0 ∧ c 6= 0

y := 1

ε

a 6= 0∨
c = 0

z := 2

?x+ y + z 6= 3

?x+ y + x = 3

The edges of the control flow graph are labeled to reflect the corresponding program
command on that portion of the path. As shorthand, we write ?P to represent condi-
tions that must hold, i.e. in place of assert(P ). The node marked in red denotes a path
that violates the assertion. Edges labeled with ε are noops, and don’t correspond to any
program command. Then the task of symbolic execution is to determine if this node is
reachable from an initial state from a feasible path.

Each path through the control flow graph corresponds to a verification condition,
which we obtain by listing out a corresponding program for that path and then apply-
ing the relevant axioms of dynamic logic. For example, the path that first takes the right
edge from the initial state, and then left edges until reaching the red node would be:

` [?a > 0;x := −1; ?b < 5; ?a = 0 ∧ c 6= 0; y := 1; z := 2; ?x+ y + z = 3]> (12)

Notice that we use the trivial postcondition > because we are merely interested in
whether there are any traces that could follow this path. So we don’t care what prop-
erties the final state may have, which is described by >. Applying axioms [:=]= and
[assert], we derive the following verification condition.

a > 0 ∧ x1 = −1 ∧ b < 5 ∧ a = 0 ∧ c 6= 0 ∧ y1 = 1 ∧ z1 = 2 ∧ x1 + y1 + z1 = 3 (13)

15-316 LECTURE NOTES MATT FREDRIKSON



L6.10 Automated Safety-Checking Strategies

This formula is not satisfiable, because a > 0 ∧ a = 0 is a contradiction, so there are no
feasible traces that follow this path. On the other hand, if we had taken the left branch
off of the initial state and then followed the same commands afterwards, it is not hard
to check that we would obtain the following verification condition.

a ≤ 0 ∧ b < 5 ∧ a = 0 ∧ c 6= 0 ∧ y1 = 1 ∧ z1 = 2 ∧ x+ y1 + z1 = 3 (14)

Equation 14 is indeed satisfiable, as evidenced by the witness x = 0, y1 = 1, z1 = 2. This
means that the path is feasible, which we could show by running the program on any
input with x = 0.

Checking invariants. Path formulas contain all of the information that we need to
reason about the satisfaction of formulas over state at all points in the execution. For
example, suppose we wish to check the invariant P . Part way through the derivation
of

x = a, y = b ` [z := x;x := y; y := z]x = b ∧ y = a

we derived the sequent x = a, y = b, z1 = x ` [x := y][y := z]x = b ∧ y = a. The context
x = a, y = b, z1 = x reflects the state after the first assignment z := x. We need to show
that at this point in the execution, P holds, i.e., we can prove validity of:

x = a, y = b, z1 = x ` P

Executing the next assignment x := y lead to the context x = a, y = b, z1 = x, x1 = y
and the obligation to prove:

x = a, y = b, z1 = x, x1 = y ` P

And finally, executing the last assignment y := z gives the obligation:

x = a, y = b, z1 = x, x1 = y, y1 = z1 ` P

This is a useful tactic, and the ability to select paths from the program affords more
flexibility than bounded model checking the program:

z := x; assert(P );x := y; assert(P ); y := z; assert(P )

This flexibility is important when the program is too large to perform bounded model
checking on to a sufficiently large execution depth. If we can reason efficiently that
there is a subset of paths on which the safety property will definitely hold, then the
remaining (hopefully much smaller or at least finite) set of paths can be enumerated
with symbolic execution and discharged individually. In subsequent lectures, we will
see how runtime safety checks can be used to ensure that certain paths will never violate
safety, so that targeted techniques like symbolic execution can be used to reason about
the rest.

15-316 LECTURE NOTES MATT FREDRIKSON


	Introduction & Recap
	Bounded Model Checking
	Symbolic Execution

