
15-316: Software Foundations of Security and Privacy

Lecture Notes on
Information Flow Types II

Matt Fredrikson

Carnegie Mellon University
Lecture 13

1 Introduction

In the previous lecture, we began our study of a type system that enforces the informa-
tion flow property non-interference [VIS96]. Recall that the relation ω1 ≈Γ,L ω2 denotes
the fact that states ω1 and ω2 agree on the values of variables typed L by type context
Γ. Then Definition 1 says that a program α satisfies non-interference if and only if it
does not allow the values of H-typed variables in the initial state to influence L-typed
variables in the final state.

Definition 1 (Non-interference). Let α be a program and Γ a type environment associ-
ating security labels to all of the variables in α. Then α satisfies non-interference under
Γ if and only if executing α under L-equivalent states leads to final states that are also
L-equivalent. More precisely,

∀ω1, ω2.ω1 ≈Γ,L ω2 ∧ 〈ω1, α〉 ⇓ω′
1 ∧ 〈ω2, α〉 ⇓ω′

2 → ω′
1 ≈Γ,L ω

′
2 (1)

where ω1 and ω2 range over the set of possible program states.

We then began looking at a set of typing rules that would allow us to decide whether
a given program satisfies this definition under a given typing context: if we can use
the rules to prove that the program is well-typed according to this system, then the
program satisfies the property. We developed the rules for expressions, which form
judgements of the form Γ ` e : `, meaning that under context Γ expression e is typed `.

(ConstL)
Γ ` c : L

(TrueL)
Γ ` true : L

(FalseL)
Γ ` false : L

(Var)
Γ ` x : Γ(x)

(UnOp)
Γ ` e : `

Γ ` � e : `
(BinOp)

Γ ` e : `1 Γ ` ẽ : `2

Γ ` e� ẽ : `1 t `2

https://15316-cmu.github.io/index.html


L13.2 Information Flow Types II

Recall that when we developed the rule BinOp, we introduced a partial order v on
security types. The partial order is reflexive and transitive, so ` v ` and if `1 v `2 and
`2 v `3 then `1 v `3. For the types L, H, we formalized our intuition about these labels
corresponding to “low” and “high” by specifying the partial ordering L v H, H 6v L.
Finally, we attached the operator `1 t `2 to our partial order on security types, which
returns the smallest label that is as least as large as `1 and `2, where “smallest” and
“largest” come from the order relation v.

Today we will continue developing this type system, covering a set of rules that let us
judge the type-correctness of commands. But first we will introduce a lemma about the
rules for expressions called the simple security lemma which says that if an expression
can be typed with label ` by the rules, then the expression does not depend on any in-
formation given a higher label. This lemma will be crucial later on when we prove that
the full type system is sound, meaning that only programs satisfying non-interference
have derivations of their typing judgement in this system.

2 Simple Security

So far we have introduced the typing rules for expressions in our imperative language,
and for each one we tried to build an intuition for why the rule appropriately capture
the intent of the type system to prevent information flows from H to L variables. But
we haven’t formalized this, and before pressing on with the typing rules for commands
it will be helpful to understand what the system gives us from judgements on expres-
sions.

Expressions in our language are only capable of reading sensitive information, and
possibly carrying that information in their value. So we would like to formalize a prop-
erty that says something like, “an expression never reads what it isn’t supposed to
read”. What does “supposed to” mean? Recall that judgements on expressions take the
form Γ ` e : `. So for example if we were able to use the rules to derive Γ ` e : L, then
we would hope that e doesn’t read any data typed H by Γ. The simple security lemma
says exactly this, which is that expressions typed by the system never read data from
sources with higher types according to v.

Lemma 2 (Simple Security). If Γ ` e : `, then for every variable subexpression x appearing
in e, Γ(x) v `. In other words, expressions never read variables above their type.

Proof. This proof is done most appropriately by induction on the structure of e. We will
treat arithmetic and Boolean expressions at once, so the inductively-defined syntax that
we are working with is as follows:

e, ẽ ::= c | true | false | x | � e | e� ẽ

As before, we use � to represent unary and binary operators.
The base cases in this proof correspond to the expressions with no subexpressions,

which are the numeric and Boolean constants c, true, false, as well as variable expres-
sions x. We proceed with the inductive argument by cases.

15-316 LECTURE NOTES MATT FREDRIKSON



Information Flow Types II L13.3

Base case: constants. The rules ConstL,TrueL,FalseL type all expressions `. The proof
for these cases is indeed trivial, because constants do not contain any variable
subexpressions.

Base case: variables. The rule Var gives us the judgement Γ ` x : Γ(x). The only
variable appearing in the expression is x, and v is reflexive so Γ(x) v Γ(x).

Inductive case: unary operators. The rule UnOp says that if Γ ` e : `, then Γ `
�e : `. The only variables appearing in �e are those that also appear in e, and
the inductive hypothesis tells us that for all variables x appearing in e, if Γ ` x : `′

then `′ v `.

Inductive case: binary operators. The rule BinOp says that if Γ ` e : `1 and Γ `
ẽ : `2, then Γ ` e� ẽ : `1 t `2. The only variables appearing in e � ẽ are those
that also appear in either e or ẽ, and the inductive hypothesis tells us that for all
variables x appearing in e, if Γ ` x : `′1 then `′1 v `1, and likewise for any variable
appearing in ẽ, Γ ` x : `′2 then `′2 v `2. But `1 v `1 t `2, and `2 v `1 t `2, so
because v is transitive it must be that for any variable x appearing in either e or ẽ,
if Γ ` x : `′ then `′ v `1 t `2. This completes the proof.

The simple security lemma gives us a straightforward guarantee to work with as we
develop typing rules for commands that contain expressions. Namely, we can assume
that whatever label the type system gives us for an expression will be an upper-bound
of all of the labels assigned to variables within the expression, and thus an upper bound
on the security type of information that may influence an expression.

2.1 Type-checking commands

Now that we know how to assign types to expressions, we can move on to the more
interesting question of how to check that a given command satisfies non-interference
under a type context Γ. We will proceed as before, developing a set of rules that we
can later prove give us this property. The judgements that the rules derive is slightly
different than with expressions, though. Keeping in mind that the security types L, H
denote the fact that a given data element, e.g. an expression in our language, carries
information of a particular security level, it does not make sense to write something
like the following:

Γ ` if(x ≤ 0) y := 1 else y := 0 : H

We have not thought of programs as any sort of data element capable of carrying infor-
mation by themselves, and however intriguing such an idea may seem, doing so would
distract us from our goal of enforcing non-interference at the moment.

Instead, we have thought of programs as objects that compute, i.e., by applying oper-
ations to data and moving it between variables. Our goal is to make it impossible to use
the typing rules to constructa proof that a program satisfies non-interference when it

15-316 LECTURE NOTES MATT FREDRIKSON



L13.4 Information Flow Types II

doesn’t. So the judgements that our rules for commands will use takes the form shown
in Equation 2, and should be read as “under type context Γ, program α is well-typed”.
We will set up the rules so that “well-typed” implies “satisfies non-interference”, but
we’ll say more on this later.

Γ ` α (2)

Now we proceed to design typing rules for each of the commands in our language.

Assignments. To design a typing rule for assignment commands, we must ask our-
selves what conditions might result in a violation of Definition 1. More intuitively, what
conditions on Γ and the command x := e would result in a flow of information from
variables labeled H to those labeled L?

Certainly, if the target of the assignment x is labeled L and the expression on the
right-hand side is labeled H, then such a flow will occur. More generally, if Γ(x) = `1
and Γ ` e : `2, where `2 6v `2, then an information flow will occur when the value of e
is assigned to x. Perhaps we can write the following rule, shown in Equation 3.

Γ ` e : `1 `1 v Γ(x)

Γ ` x := e
(3)

This rule says that if the label of e as no larger (i.e., “more secret”) than that of x, then
the assignment is well-typed. Does this work? What about the “implicit” information
flows we discussed last lecture, such as that in the following judgement?

x : H, y : L ` if(x) y := 1 else y := 0 (4)

We know that this doesn’t satisfy non-interference, but it seems as though we might
not reject it using the rule shown in (3).

In order to reject programs with implicit flows, we will keep track of the security
label of a distinguished “program counter” variable pc in Γ. Later when we design
rules for conditionals and loops, we will make sure to account for this part of the type
context so that whenever the control flow is currently influenced by H-labeled data, then
Γ(pc) = H. But for now we will just assume that this has been properly accounted for
in the context, and use it to define our rule for assignment.

(Asgn)
Γ ` e : `1 `1 t Γ(pc) v Γ(x)

Γ ` x := e

The rule Asgn says that if the label of x is at least as large as the larger of the label for
the right-hand side and pc, then the assignment is well-typed. Thinking through a few
cases, this means that whenever Γ(pc) = H, then Γ(x) must be L because H t ` = H and
H 6v L. Really, if either of e or pc is H, then in order for the assignment to be well-typed
then xmust also be H. This seems like what we want, so we move to the next command.

15-316 LECTURE NOTES MATT FREDRIKSON



Information Flow Types II L13.5

Composition. Compared to the surprisingly nuanced reasoning we had to do for
assignment commands, composition is relatively easy to think about. If we want to
reason that a program α;β is well-typed, then the only rule that makes any sense is to
require that both α and β also be well-typed on their own.

(Comp)
Γ ` α Γ ` β

Γ ` α;β

The rule Comp above says exactly this.

Conditionals. Now we come to conditionals. Unlike the previous cases, condition-
als raise the possibility of influencing control flow (represented in our type system by
Γ(pc)) on H-labeled data. We need to account for this in the typing rule, so that when
we reason about whether the branches are well-typed we properly account for whether
the pc might carry H data.

Recall that we treat type environments similar to updateable maps, so that if Γ is an
environment, possibly containing a mapping for x, then (Γ, x : L) is the environment
that maps x to L and everything else y to Γ(y). Then to carry the type of the Boolean
expression Q in the guard of a conditional to the type contexts of its branches, we want
to use a context that maps pc to the least upper bound of the current pc, and the type
of e.

(If)
Γ ` Q : ` `′ = ` t Γ(pc) Γ, pc : `′ ` α Γ, pc : `′ ` β

Γ ` if(Q)α elseβ

The rule If above does this. Looking at the antecedent, we first type the guard expres-
sion Q as `, and then compute the least upper bound `′ of ` and the current label of
pc. We then check that both branches are well-typed under the environment where
Γ(pc) = `′. If this is the case, then the conditional is well-typed.

While Loops. The last command that we need to derive a rule for is our looping
construct while. Much like in the case of conditionals, while loops can leak information
from H data to the program counter through their conditional test. Not surprisingly, the
rule for while loops can use the same approach as that for conditionals, as shown in
While below.

(While)
Γ ` Q : ` `′ = ` t Γ(pc) Γ, pc : `′ ` α

Γ ` while(Q)α

It may seem strange that the rule for while is in some ways simpler than the one for
if statements, as this was certainly not the case when we discussed axioms for prov-
ing safety. However, the type of reasoning that this type system does about program
behaviors is significantly more “coarse” than what we did when proving arbitrary post-
conditions, and in this case the only special consideration that we need to account for
is whether the loop flows H data to L state through the program counter.

15-316 LECTURE NOTES MATT FREDRIKSON



L13.6 Information Flow Types II

2.2 Confinement

Before moving on, let’s return to the type system’s treatment of implicit information
flows resulting from H-typed influence on control flow. To type a branching command,
the rules first obtain the label ` of the condition, and then attempt to type the subcom-
mands under a pc label that is the least upper bound of the current pc label Γ(pc) and
`. The point of this is to ensure that if a subcommand writes to a variable typed with
a label that is lower than the current pc label, or lower than the label given to the con-
dition, then the system will be unable to derive a judgement for the subcommand and
thus its enclosing branching command.

The confinement lemma below formalizes this property, and as with the simple se-
curity lemma, will be a useful building block when we attempt to prove the soundness
of the entire type system.

Lemma 3 (Confinement). Well-typed commands never write to variables below the pc label.
More precisely, if Γ ` α, then for every variable x assigned in α, Γ(pc) v Γ(x).

Proof. As we did with simple security, we can prove this lemma by induction on the
structure of α. The inductive definition of command syntax is:

α, β ::= x := e | if(Q)α elseβ | α;β | while(Q)α

So the only base case containing no sub-commands is assignment, and the rest will
make use of the inductive hypothesis which says that confinement holds for any sub-
command appearing in α. We proceed with the cases below.

Base case: assignment. If we can derive the judgement Γ ` x := e, then the rule
Asgn tells us that Γ(pc) v Γ(x) because in fact `1tΓ(pc) v Γ(x), where Γ ` e : `1,
and we know that Γ(pc) v `1 t Γ(pc).

Inductive case: conditionals. If Γ ` if(Q)α elseβ, then If tells us that both Γ, pc : `′ `
α and Γ, pc : `′ ` β, where `′ = ` t Γ(pc). But Γ(pc) v `′, and the inductive hy-
pothesis gives us that for any variable x assigned in either α or β, `′ v Γ(x). So
because v is transitive, Γ(pc) v Γ(x).

Inductive case: composition. This case follows immediately from the inductive hy-
pothesis. If Γ ` α;β then by Comp we have Γ ` α and Γ ` β. The inductive
hypothesis tells us that for all x assigned in α or β, Γ(pc) v Γ(x).

Inductive case: while loops. This case is very similar to that of conditionals. If Γ `
while(Q)α, then While tells us Γ, pc : `′ ` α where `′ = ` t Γ(pc) and Γ ` e : `.
Then the inductive hypothesis says that any variables x assigned in α are typed
such that Γ(`′) v Γ(x). Then by transitivity of v and the fact that Γ(pc) v `, we
conclude that Γ(pc) v Γ(x). This completes the proof.

15-316 LECTURE NOTES MATT FREDRIKSON



Information Flow Types II L13.7

3 Soundness

Now we have introduced all of the typing rules, and proved two key lemmas that
characterize what they accomplish. Our ultimate goal is to prove that the type system
is sound, in the sense that if Γ ` α, i.e. α is well-typed, then α satisfies non-interference
under typing context Γ. More formally, we would like to prove Theorem 4.

Theorem 4 (Soundness of information flow type system). Let α be a program, and ω1, ω2

be states such that ω1 ≈Γ,L ω2. Moreover, let ω′
1, ω

′
2 be states such that 〈ω1, α〉 ⇓ω′

1 and
〈ω2, α〉 ⇓ω′

2. Then for a policy Γ over the lattice {L, H}, if Γ ` α then ω′
1 ≈Γ,L ω

′
2.

How do we prove Theorem 4? Given the way things have gone so far with the lem-
mas, we might think to try an induction on the structure of α. This is a sensible initial
guess, but we will run into problems when we attempt the case for while loops. To see
why, first recall the big-step semantics for loops.

〈ω, P 〉 ⇓B false
〈ω, while(P )α〉 ⇓ω

〈ω, P 〉 ⇓B true 〈ω, α; while(P )α〉 ⇓ω′

〈ω, while(P )α〉 ⇓ω′ (5)

Were we to proceed with induction on the structure of α, the case where 〈ω, P 〉 ⇓B false
would not pose a problem because ω1 = ω′

1 and ω2 = ω′
2. But in the case where

〈ω, P 〉 ⇓B true , we would need to invoke the inductive hypothesis on 〈ω, α; while(P )α〉 ⇓ω′

in order to conclude that ω′
1, ω

′
2 are L-equivalent. But we should not even think about

doing this, because it is not in any way induction! Notice that α; while(P )α is not
structurally “smaller” than while(P )α, in fact it contains a copy of the loop. Invoking
the inductive hypothesis in this way is tantamount to assuming what we are trying to
prove, and is not sound reasoning.

3.1 Induction on the structure of the big-step derivation

To avoid the pitfall above, we need to find some kind of structure to do induction on
that we know has a base case, i.e., that terminates. Notice that because we assume
〈ω1, α〉 ⇓ω′

1 and 〈ω2, α〉 ⇓ω′
2, we know that α must terminate when executed on ω1 and

ω2, and that there is a derivation tree using the rules of the big-step semantics ending
with 〈ω1, α〉 ⇓ω′

1 (and another for ω2, ω
′
2). Perhaps we can do induction on the structure

of that derivation. Specifically, perhaps we can reason that the property holds for all
derivations of minimal size (i.e., one application of a semantic rule), and then break
larger derivation trees into parts, assuming that the property holds for the smaller sub-
derivations to prove that it holds for the entire tree.

This may seem like a new kind of inductive principle, but recall that we used it to
prove the soundness of the propositional sequent calculus. The principle is the same as
any other structural induction that we have done so far, but our cases come from the
derivation rules of the big-step semantics ⇓. We will prove Theorem 4 by induction on
〈ω1, α〉 ⇓ω′

1, giving an argument for each case of what the final derivation rule could
be. The base cases correspond to derivation trees where only one rule was applied,

15-316 LECTURE NOTES MATT FREDRIKSON



L13.8 Information Flow Types II

which in this case is assignment commands. The inductive cases are those where the
derivation tree may have more than one rule, and the inductive hypothesis that we use
says that Theorem 4 holds for each immediate subtree.

So for example, when we do the case for if commands, there are two ways that the
derivation could end.

〈ω, P 〉 ⇓B true 〈ω, α〉 ⇓ω′

〈ω, if(P )α elseβ〉 ⇓ω′
〈ω, P 〉 ⇓B false 〈ω, β〉 ⇓ω′

〈ω, if(P )α elseβ〉 ⇓ω′ (6)

We will give a case for each rule, and our inductive hypothesis will let us assume that
the theorem holds for 〈ω, α〉 ⇓ω′ (in the case where P evaluates to true), and 〈ω, β〉 ⇓ω′

(in the case where P evaluates to false). More precisely, the inductive hypothesis in
the true case would tell us that if Γ ` α, then for any ω1 ≈Γ,L ω2 if 〈ω1, α〉 ⇓ω′

1 and
〈ω2, α〉 ⇓ω′

2 then ω′
1 ≈Γ,L ω

′
2.

Before we continue with the proof, it is important to point out that our induction on
the derivation structure will not include derivations for expressions that use ⇓Z and ⇓B.
These are different relations than ⇓, and while it is possible to include their derivation
in this induction, it is not necessary. We proved Lemmas 2 and 3 for a reason, and as we
will see, they give us everything that we need to know about expressions to complete
the proof.

3.2 Soundness proof: while case

We will now complete the case for while loops, leaving the remaining cases as an ex-
ercise. So we would like to prove that if Γ ` while(Q)α, then for any ω1, ω2 where
ω1 ≈Γ,L ω2 and ω′

1, ω
′
2 where

〈ω1, while(Q)α〉 ⇓ ω′
1 and 〈ω2, while(Q)α〉 ⇓ ω′

2

it must be the case that ω′
1 ≈Γ,L ω

′
2. Using the fact that Γ ` while(Q)α, we proceed in

cases on the label `′ used to type the subcommand α by the (While) rule, reproduced
below for convenience.

(While)
Γ ` Q : ` `′ = ` t Γ(pc) Γ, pc : `′ ` α

Γ ` while(Q)α

Either the label `′ used to type the subcommand α is L or it is H.

Case `′ = L: Simple security (Lemma 2) tells us that for any variable x in e, Γ(x) v L.
But L is the global bottom element of the lattice {L, H}, and becausev is transitive,
Γ(x) = L. We can then use the fact that ω1 ≈Γ,L ω2 to reason that for some constant
b, 〈ω1, Q〉 ⇓B b and 〈ω2, Q〉 ⇓B b. In other words, Q evaluates to the same thing in
ω1 and ω2, so both executions take the same branch through the loop condition.

If b = false , then ω1 = ω′
1 and ω2 = ω′

2. Then the theorem holds because ω1 ≈Γ,L

ω2, so ω′
1 ≈Γ,L ω

′
2.

15-316 LECTURE NOTES MATT FREDRIKSON



Information Flow Types II L13.9

If b = true , then things are a bit more nuanced. We know that the last steps of the
big-step derivations of were:

〈ω1, Q〉 ⇓B true 〈ω1, α; while(Q)α〉 ⇓ω′
1

〈ω1, while(Q)α〉 ⇓ω′
1

〈ω2, Q〉 ⇓B true 〈ω2, α; while(Q)α〉 ⇓ω′
2

〈ω2, while(Q)α〉 ⇓ω′
2

Moreover, the derivation of 〈ω1, α; while(P )α〉 ⇓ω′
1 and 〈ω2, α; while(P )α〉 ⇓ω′

2

ended with the step:

〈ω1, α〉 ⇓ω′′
1 〈ω′′

1 , while(Q)α〉 ⇓ω′
1

〈ω1, α; while(Q)α〉 ⇓ω′
1

〈ω2, α〉 ⇓ω′′
2 〈ω′′

2 , while(Q)α〉 ⇓ω′
2

〈ω2, α; while(Q)α〉 ⇓ω′
2

Observe that the derivation trees ending in 〈ω1, α〉 ⇓ω′′
1 and 〈ω′′

1 , while(Q)α〉 ⇓ω′
1

have exactly one fewer step than that of 〈ω1, α; while(Q)α〉 ⇓ω′
1 (and likewise

for the derivations involving ω2, ω
′′
2 , ω

′
2). The inductive hypothesis applies to the

derivation of each:

• From 〈ωi, α〉 ⇓ω′′
i , i ∈ {1, 2}: If ω1 ≈Γ,L ω2 and Γ ` α, then the inductive

hypothesis gives us that ω′′
1 ≈Γ,L ω

′′
2 . We already know that Γ ` α, because

Γ, pc : L ` α is a premise of the (While) rule, and Γ(pc) must have been L

because L = ` t Γ(pc) (where Γ ` Q : `, and L is the bottom element of the
security lattice. Therefore, ω′′

1 ≈Γ,L ω
′′
2 .

• From 〈ω′′
i , α; while(Q)α〉 ⇓ω′

i, i ∈ {1, 2}: If ω′′
1 ≈Γ,L ω

′′
2 and Γ ` α; while(Q)α,

then ω′
1 ≈Γ,L ω

′
2. We just reasoned in the previous bullet that ω′′

1 ≈Γ,L ω
′′
2 , and

that Γ ` α. We have from the premise of the current case of the soundness
proof that Γ ` while(Q)α. So by the (Comp) typing rule, we can conclude
that Γ ` α; while(Q)α. This leaves us with ω′

1 ≈Γ,L ω
′
2.

To summarize the case where `′ = L, we reasoned that executions under both ω1

and ω2 would take the same branch of the loop. If they both take the false branch,
then because ω1 ≈Γ,L ω2 and the final states ω′

1, ω
′
2 will be identical to the initial

states, noninterference must hold. If they both take the true branch, then we rea-
son inductively that as long as noninterference holds for the smaller derivations
needed to account for first executing the loop body once, and subsequently exe-
cuting the remaining n − 1 iterations of the loop, then it must hold for the entire
execution of the loop as well.

Case `′ = H: In this case, the label of pc used to type α is H, either because the pc in
which the loop executes is already H, or because Γ ` Q : H. The only way that the
H content of pc can influence the L content of a final state is if an assignent to a
variable x labeled Γ(x) = L occurs within α. The confinement lemma (Lemma 3)
tells us that for any variable x assigned in α, H v Γ(x), and thus Γ(x) must not be
L. So for every x where Γ(x) = L, ω1(x) = ω′

1(x) and ω2(x) = ω′
2(x), because x is

never assigned in α. Using the assumption ω1 ≈Γ,L ω2, we can then conclude that
ω′

1 ≈Γ,L ω
′
2, completing the proof for this case.

15-316 LECTURE NOTES MATT FREDRIKSON



L13.10 Information Flow Types II

The proofs for the remaining cases mirror the structure of the proof for while loops,
splitting into cases where the label of pc is L and H, and apply the inductive hypothesis
to assert L-equivalence of intermediate states corresponding to immediate subtrees in
the big-step derivation. They are left as an exercise, and will help you gain familiarity
with this type system, as well as the principle of induction on the structure of deriva-
tions, which is a powerful technique that is used widely to establish useful properties
of deductive systems.

4 Completeness

Now that we have established the soundness of the information flow type system, it
is natural to ask whether it is complete in the sense that if a program satisfies non-
interference, then it is well-typed according to the rules.

Unfortunately, this is not the case, and the reason is the way that implicit flows
are handled. Consider the following program, which satisfies the definition of non-
interference (Definition 1) under type context Γ = (x : H, y : L, pc : L).

if(x = 0) y := 1 else y := 1

The expression rule BinOp will only let us prove Γ ` x = 0 : H, and so If requires that
we derive Γ, pc : H ` y := 1. But Asgn then requires that L t H v Γ(y) and Γ(y) = L, so
we are unable to complete the type derivation. So in short, we are unable to type this
command even though it satisfies non-interference.

Perhaps this should not come as a surprise, considering that non-interference is a
semantic property and our typing rules are all based on the syntax of the program. If we
want to prove that programs such as this one satisfy non-interference, then we must use
the self-composition technique outlined in Lecture 10. Alternatively, we can try to find
a way to write programs so that they always typecheck, avoiding control dependence
on H-labeled data wherever it is not necessary. This is almost always the right approach
to take: write the program in a way that makes it easy to prove the desired security
property, rather than attempting to “retrofit” security as an afterthought.

References

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. Journal of Computer Security, 4(2-3):167–187, January 1996.

15-316 LECTURE NOTES MATT FREDRIKSON


	Introduction
	Simple Security
	Type-checking commands
	Confinement

	Soundness
	Induction on the structure of the big-step derivation
	Soundness proof: while case

	Completeness

