
A Taste of Dynamic Information-Flow Control
15-136 Software Foundations of Security and Privacy

Arthur Azevedo de Amorim
October 17, 2019

Carnegie Mellon University



Motivation



Static information-flow control (IFC) is great

…but it has its shortcomings.

• Incompatible with dynamic languages (Python, JS, …)
• Annotation burden can be a showstopper for legacy code
• Every bit of the program must handle security explicitly

1



Dynamic IFC to the rescue

Secrecy level of data is determined at run time, rather than
statically. Thought to be impossible until 2009, when Sabelfeld
and Russo proved noninterference for such a language.

Several advantages:

• More flexible and more permissive
• Easier for dynamic languages
• Simplifies migration of legacy code
• Security-aware code is more local

2



Dynamic IFC to the rescue

Secrecy level of data is determined at run time, rather than
statically. Thought to be impossible until 2009, when Sabelfeld
and Russo proved noninterference for such a language.

Several advantages:

• More flexible and more permissive
• Easier for dynamic languages
• Simplifies migration of legacy code
• Security-aware code is more local

2



The Language



Syntax

Same as before, but with a classification expression.

𝑒 ∶= 𝑥 ∣ 𝑛 ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 × 𝑒2 ∣ 𝑒@𝑙
𝑝, 𝑞 ∶= true ∣ false ∣ 𝑝 ∧ 𝑞 ∣ 𝑝 ∨ 𝑞 ∣ ¬𝑝 ∣ 𝑒1 = 𝑒2 ∣ 𝑒1 ≤ 𝑒2

𝛼, 𝛽 ∶= 𝑥 ← 𝑒 ∣ 𝛼; 𝛽 ∣ if (𝑝) 𝛼 else 𝛽 ∣ while (𝑝) 𝛼

Meaning: the value of 𝑒 at the secrecy level 𝑙.

(No typing rules are needed)

3



Syntax

Same as before, but with a classification expression.

𝑒 ∶= 𝑥 ∣ 𝑛 ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 × 𝑒2 ∣ 𝑒@𝑙
𝑝, 𝑞 ∶= true ∣ false ∣ 𝑝 ∧ 𝑞 ∣ 𝑝 ∨ 𝑞 ∣ ¬𝑝 ∣ 𝑒1 = 𝑒2 ∣ 𝑒1 ≤ 𝑒2

𝛼, 𝛽 ∶= 𝑥 ← 𝑒 ∣ 𝛼; 𝛽 ∣ if (𝑝) 𝛼 else 𝛽 ∣ while (𝑝) 𝛼

Meaning: the value of 𝑒 at the secrecy level 𝑙.

(No typing rules are needed)

3



Syntax

Same as before, but with a classification expression.

𝑒 ∶= 𝑥 ∣ 𝑛 ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 × 𝑒2 ∣ 𝑒@𝑙
𝑝, 𝑞 ∶= true ∣ false ∣ 𝑝 ∧ 𝑞 ∣ 𝑝 ∨ 𝑞 ∣ ¬𝑝 ∣ 𝑒1 = 𝑒2 ∣ 𝑒1 ≤ 𝑒2

𝛼, 𝛽 ∶= 𝑥 ← 𝑒 ∣ 𝛼; 𝛽 ∣ if (𝑝) 𝛼 else 𝛽 ∣ while (𝑝) 𝛼

Meaning: the value of 𝑒 at the secrecy level 𝑙.

(No typing rules are needed)

3



Semantics

Two main differences:

• Labels now exist during execution

• 𝜔 ∶ Var → ℤ × 𝐿
• ⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙, ⟨𝜔, 𝑝⟩ ⇓𝔹 𝑏@𝑙
• ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝑟

• The result 𝑟 is a final state or an error.

Previous static checks generally become dynamic checks

4



Semantics

Two main differences:

• Labels now exist during execution

• 𝜔 ∶ Var → ℤ × 𝐿
• ⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙, ⟨𝜔, 𝑝⟩ ⇓𝔹 𝑏@𝑙
• ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝑟

• The result 𝑟 is a final state or an error.

Previous static checks generally become dynamic checks

4



Semantics

Two main differences:

• Labels now exist during execution
• 𝜔 ∶ Var → ℤ × 𝐿
• ⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙, ⟨𝜔, 𝑝⟩ ⇓𝔹 𝑏@𝑙
• ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝑟

• The result 𝑟 is a final state or an error.

Previous static checks generally become dynamic checks

4



Semantics

Two main differences:

• Labels now exist during execution
• 𝜔 ∶ Var → ℤ × 𝐿
• ⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙, ⟨𝜔, 𝑝⟩ ⇓𝔹 𝑏@𝑙
• ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝑟

• The result 𝑟 is a final state or an error.

Previous static checks generally become dynamic checks

4



Semantics

Two main differences:

• Labels now exist during execution
• 𝜔 ∶ Var → ℤ × 𝐿
• ⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙, ⟨𝜔, 𝑝⟩ ⇓𝔹 𝑏@𝑙
• ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝑟

• The result 𝑟 is a final state or an error.

Previous static checks generally become dynamic checks

4



Example: binary operators

Typing rule for static IFC:

Γ ⊢ 𝑒1 ∶ 𝑙1 Γ ⊢ 𝑒2 ∶ 𝑙2
Γ ⊢ 𝑒1 ⊙ 𝑒2 ∶ 𝑙1 ⊔ 𝑙2

Evaluation rule for dynamic IFC:

⟨𝜔, 𝑒1⟩ ⇓ℤ 𝑛1@𝑙1 ⟨𝜔, 𝑒2⟩ ⇓ℤ 𝑛2@𝑙2
⟨𝜔, 𝑒1 ⊙ 𝑒2⟩ ⇓ℤ (𝑛1 ⊙ 𝑛2)@(𝑙1 ⊔ 𝑙2)

5



Example: binary operators

Typing rule for static IFC:

Γ ⊢ 𝑒1 ∶ 𝑙1 Γ ⊢ 𝑒2 ∶ 𝑙2
Γ ⊢ 𝑒1 ⊙ 𝑒2 ∶ 𝑙1 ⊔ 𝑙2

Evaluation rule for dynamic IFC:

⟨𝜔, 𝑒1⟩ ⇓ℤ 𝑛1@𝑙1 ⟨𝜔, 𝑒2⟩ ⇓ℤ 𝑛2@𝑙2
⟨𝜔, 𝑒1 ⊙ 𝑒2⟩ ⇓ℤ (𝑛1 ⊙ 𝑛2)@(𝑙1 ⊔ 𝑙2)

5



Example: binary operators

Typing rule for static IFC:

Γ ⊢ 𝑒1 ∶ 𝑙1 Γ ⊢ 𝑒2 ∶ 𝑙2
Γ ⊢ 𝑒1 ⊙ 𝑒2 ∶ 𝑙1 ⊔ 𝑙2

Evaluation rule for dynamic IFC:

⟨𝜔, 𝑒1⟩ ⇓ℤ 𝑛1@𝑙1 ⟨𝜔, 𝑒2⟩ ⇓ℤ 𝑛2@𝑙2
⟨𝜔, 𝑒1 ⊙ 𝑒2⟩ ⇓ℤ (𝑛1 ⊙ 𝑛2)@(𝑙1 ⊔ 𝑙2)

5



Evaluating Programs



Expression evaluation

⟨𝜔, 𝑥⟩ ⇓ℤ 𝜔(𝑥) ⟨𝜔, 𝑛⟩ ⇓ℤ 𝑛@⊥

⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙

⟨𝜔, 𝑒@𝑙′⟩ ⇓ℤ 𝑛@(𝑙 ⊔ 𝑙′)

(Boolean evaluation is similar)

6



Assignments

Old typing rule
Γ ⊢ 𝑒 ∶ 𝑙𝑒 𝑙𝑒 ⊔ Γ(𝑝𝑐) ⊑ Γ(𝑥)

Γ ⊢ 𝑥 ← 𝑒

New eval rule, success
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⊑ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ 𝜔[𝑥 ↦ 𝑛@(𝑙𝑛 ⊔ 𝑙𝑝𝑐)]

New eval rule, error
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⋢ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ error

• Uses so-called no-sensitive-upgrade check; 𝑙𝑛 is not used.
• NB The label of 𝑥 can go up!

7



Assignments

Old typing rule
Γ ⊢ 𝑒 ∶ 𝑙𝑒 𝑙𝑒 ⊔ Γ(𝑝𝑐) ⊑ Γ(𝑥)

Γ ⊢ 𝑥 ← 𝑒

New eval rule, success
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⊑ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ 𝜔[𝑥 ↦ 𝑛@(𝑙𝑛 ⊔ 𝑙𝑝𝑐)]

New eval rule, error
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⋢ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ error

• Uses so-called no-sensitive-upgrade check; 𝑙𝑛 is not used.
• NB The label of 𝑥 can go up!

7



Assignments

Old typing rule
Γ ⊢ 𝑒 ∶ 𝑙𝑒 𝑙𝑒 ⊔ Γ(𝑝𝑐) ⊑ Γ(𝑥)

Γ ⊢ 𝑥 ← 𝑒

New eval rule, success
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⊑ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ 𝜔[𝑥 ↦ 𝑛@(𝑙𝑛 ⊔ 𝑙𝑝𝑐)]

New eval rule, error
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⋢ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ error

• Uses so-called no-sensitive-upgrade check; 𝑙𝑛 is not used.

• NB The label of 𝑥 can go up!

7



Assignments

Old typing rule
Γ ⊢ 𝑒 ∶ 𝑙𝑒 𝑙𝑒 ⊔ Γ(𝑝𝑐) ⊑ Γ(𝑥)

Γ ⊢ 𝑥 ← 𝑒

New eval rule, success
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⊑ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ 𝜔[𝑥 ↦ 𝑛@(𝑙𝑛 ⊔ 𝑙𝑝𝑐)]

New eval rule, error
⟨𝜔, 𝑒⟩ ⇓ℤ 𝑛@𝑙𝑛 𝜔(𝑥) = _@𝑙𝑥 𝑙𝑝𝑐 ⋢ 𝑙𝑥

⟨𝜔, 𝑙𝑝𝑐, 𝑥 ← 𝑒⟩ ⇓ error

• Uses so-called no-sensitive-upgrade check; 𝑙𝑛 is not used.
• NB The label of 𝑥 can go up!

7



Sequencing

⟨𝜔1, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝜔2 ⟨𝜔2, 𝑙𝑝𝑐, 𝛽⟩ ⇓ 𝑟

⟨𝜔1, 𝑙𝑝𝑐, 𝛼; 𝛽⟩ ⇓ 𝑟

⟨𝜔1, 𝑙𝑝𝑐, 𝛼⟩ ⇓ error
⟨𝜔1, 𝑙𝑝𝑐, 𝛼; 𝛽⟩ ⇓ error

Error stops execution

8



Sequencing

⟨𝜔1, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝜔2 ⟨𝜔2, 𝑙𝑝𝑐, 𝛽⟩ ⇓ 𝑟

⟨𝜔1, 𝑙𝑝𝑐, 𝛼; 𝛽⟩ ⇓ 𝑟

⟨𝜔1, 𝑙𝑝𝑐, 𝛼⟩ ⇓ error
⟨𝜔1, 𝑙𝑝𝑐, 𝛼; 𝛽⟩ ⇓ error

Error stops execution

8



Conditionals

⟨𝜔, 𝑝⟩ ⇓𝔹 true@𝑙𝑝 ⟨𝜔, 𝑙𝑝𝑐 ⊔ 𝑙𝑝, 𝛼⟩ ⇓ 𝑟

⟨𝜔, 𝑙𝑝𝑐, if (𝑝) 𝛼 else 𝛽⟩ ⇓ 𝑟

⟨𝜔, 𝑝⟩ ⇓𝔹 false@𝑙𝑝 ⟨𝜔, 𝑙𝑝𝑐 ⊔ 𝑙𝑝, 𝛼⟩ ⇓ 𝑟

⟨𝜔, 𝑙𝑝𝑐, if (𝑝) 𝛼 else 𝛽⟩ ⇓ 𝑟

9



Looping

⟨𝜔, 𝑝⟩ ⇓𝔹 true@𝑙𝑝 ⟨𝜔, 𝑙𝑝𝑐 ⊔ 𝑙𝑝, 𝛼;while (𝑝) 𝛼⟩ ⇓ 𝑟

⟨𝜔, 𝑙𝑝𝑐,while (𝑝) 𝛼⟩ ⇓ 𝑟

⟨𝜔, 𝑝⟩ ⇓𝔹 false@𝑙𝑝
⟨𝜔, 𝑙𝑝𝑐,while (𝑝) 𝛼⟩ ⇓ 𝜔

10



Example program

y <- true@L;
z <- true@L;
if (x) {y <- false@L};
if (y) {z <- false@L};

• What happens when x = true@H and when
x = false@H?

• Can we write this program in the static language?

11



Example program

y <- true@L;
z <- true@L;
if (x) {y <- false@L};
if (y) {z <- false@L};

• What happens when x = true@H and when
x = false@H?

• Can we write this program in the static language?

11



Example program

y <- true@L;
z <- true@L;
if (x) {y <- false@L};
if (y) {z <- false@L};

• What happens when x = true@H and when
x = false@H?

• Can we write this program in the static language?

11



Noninterference



Statement

If a program 𝛼

• runs on equivalent states 𝜔1 ≈𝑙 𝜔2, and
• both runs successfully terminate: ⟨𝜔1, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝜔′

1 and
⟨𝜔2, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝜔′

2

then the final states are equivalent 𝜔′
1 ≈𝑙 𝜔′

2.

12



What Does Equivalence Mean?

𝑙𝑛 ⊑ 𝑙

𝑛@𝑙𝑛 ≈𝑙 𝑛@𝑙𝑛

𝑙1 ⋢ 𝑙 𝑙2 ⋢ 𝑙

𝑛1@𝑙1 ≈𝑙 𝑛2@𝑙2

∀𝑥. 𝜔1(𝑥) ≈𝑙 𝜔2(𝑥)

𝜔1 ≈𝑙 𝜔2

13



Lemmas

• Expression evaluation respects equivalence: if 𝜔1 ≈𝑙 𝜔2
and ⟨𝜔𝑖, 𝑒⟩ ⇓ℤ,𝔹 𝑟𝑖, then 𝑟1 ≈𝑙 𝑟2.

• Confinement: if ⟨𝜔, 𝑙𝑝𝑐, 𝛼⟩ ⇓ 𝜔′ and 𝑙𝑝𝑐 ⋢ 𝑙, then 𝜔′ ≈𝑙 𝜔.
• ≈𝑙 is an equivalence relation.

Use induction on the execution length.

14



Wrapping up



IFC in the Wild

• Static IFC languages: Jif (based on Java), FlowCaml (based
on OCaml), SPARK (based on Ada), …

• Research IFC OSs: HiStar, Asbestos, …
• Taint tracking in Perl, Ruby, etc
• Dynamic IFC languages and libraries: JavaScript monitors,
LIO (Haskell)

15



IFC in the Wild

• Static IFC languages: Jif (based on Java), FlowCaml (based
on OCaml), SPARK (based on Ada), …

• Research IFC OSs: HiStar, Asbestos, …
• Taint tracking in Perl, Ruby, etc
• Dynamic IFC languages and libraries: JavaScript monitors,
LIO (Haskell)

15



Demo!

16



Thank you for your attention!

Some references:

• “From Dynamic to Static and Back: Riding the Roller
Coaster of Information-Flow Control Research.” Sabelfeld
and Russo, 2009. (First dynamic IFC language with a proof
of noninterference.)

• “Flexible Dynamic Information Flow Control in Haskell.”
Stefan et al., 2011.

17


	Motivation
	The Language
	Evaluating Programs
	Noninterference
	Wrapping up

