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1 Introduction

In the previous lecture we looked at ways of relaxing noninterference so that we could
use similar properties to reason about the information flow security of programs that
don’t leak “too much” about their secret inputs. To address this problem in the special
context of such authorization checks, we discussed a type system due to Dennis Vol-
pano and Geoff Smith[VS00]. They introduced a corresponding typing rule that allows
the result of a match expression to flow to the class corresponding to the least of its
given operands.

(Match)
Γ ` e : `1 Γ ` ẽ : `2

Γ ` match(e, ẽ) : `1 u `2
They formalized the meaning of leaking “too much” by appealing to the complexity of
an attacker who wishes to learn the secret state in the resulting type system, concluding
that to do so would require exponential resources.

Theorem 1. Let Γ = (s : H, o : L) and α be a deterministic program such that:

1. Γ ` α in the type system that includes match.

2. 〈ω, α〉 ⇓ ν for ω(s) = v, ω(o) 6= v, ν(o) = v.

So α always succeeds at transferring the value stored in s at the initial state into o at the final
state. Then there exists some state ω̂ where:

1. ω̂(s) requires at least k bits to represent

2. Evaluating 〈ω̂, α〉 results in greater than poly(k) evaluations of match.

In other words, the type system prevents polynomial-time attacks on some H state.
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We then introduced a more general technique for understanding the degree to which
programs leak sensitive information, based on the idea of a feasible set ΩΓ(α, ω). This
set corresponds to the initial states that agree with the attacker’s knowledge of the L values
of the initial and final states:

ΩΓ(α, ω) = {ω′ : ω′ ≈L ω and Ev(ω′, α) ≈L Ev(ω, α)}

The feasible set characterizes all of the attacker’s uncertainty about the initial state, and
in particular the H part of the initial state (because the rest is known). Intuitively, any
state in the feasible set will lead to exactly the same observations in the initial and final
states, and so the attacker has no way of determining which of these states the program
actually started in. From the attacker’s perspective, they are indistinguishable from each
other.

In today’s lecture, we will look more carefully at a different set of techniques for re-
vealing some useful information about secret state while controlling the attacker’s level
of uncertainty about it. These techniques all use randomness to produce approximate
results for computations, while providing some form of cover for the true secret. We
will look at a property called differential privacy [Dwo06] that formalizes the protections
one might gain from this approach, and study some properties that make it useful for
building computations that protect secret data. Differential privacy has been applied to
a wide range of important computations to protect the privacy of source data [DR14],
from machine learning [CMS11] to web browser data collection [EKP14]. We will not
have time to cover these applications in any detail, but will instead focus on the core
ideas behind the approach.

2 Quantifying uncertainty

In the previous lecture we mentioned that when the feasible set is large, it is an indica-
tion that the associated program did not reveal “too much” about its secret initial state.
The reason for this is that when a large number of initial states remain consistent with
an attacker’s observations, then the attacker’s uncertainty about which one was actu-
ally used is great. So perhaps we can reason about information flow security in terms
of keeping the attacker’s uncertainty about the secret high.

But what can we do if the program that we want to write is inherently “leaky” in that
it results in small feasible sets? One way that we can make the attacker more uncertain
about the secret initial state is to use randomness in our program. Consider for example
a technique called randomized response [War65], which is a privacy technique dating back
to the 1960s with roots in the social sciences. Randomized response was motivated by
survey collection, in situations where questions asked of respondents relate to sensitive
issues. Randomized response gives these subjects plausible deniability, by providing a
structured way of adding random “noise” to their answer.

In the following, assume that flip(p) is a random function that flips a biased coin with
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parameter p. In other words,

flip() =

{
1 with probability 1/2
0 with probability 1/2

(1)

Then suppose that F is a function that returns a value in {0, 1}, and that we wish to
release F (x) publicly while hiding the secret value x as much as possible. Then the ran-
domized response program RandResp, is as follows, where we assume that the variable
o is publicly-observable and b is not (e.g., Γ = x : H, b : H, o : L).

b := flip()
if b = 1 then
o := F (x)

else
o := flip()

(2)

In short, randomized response returns the true value of F (x) with probability 1/2, and
a completely random answer with probability 1/2. In terms of feasible sets, this appears
to be an absolutely brilliant approach because now the attacker must be completely
uncertain about the initial value of x. Why is this so? The adversary can only see o, and
if b = 0 after being assigned, then o does not depend at all on x, so x could be anything
as though the program satisfied non-interference.

But perhaps this doesn’t seem quite right. Let’s assume for a moment that x ∈ {0, 1}
and F is simply the identity function, and walk through the various possibilities. In
the following, we will treat RandResp as though it were a function of x that returns the
value in o after executing. If x = 0, then,

Pr[RandResp(0) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip() = 0] = 1/2 + 1/4 = 3/4 (3)

We could use the exact same reasoning to conclude that Pr[RandResp(1) = 1] = 3/4.
Likewise we could reason about the probability that randomized response outputs an
incorrect answer,

Pr[RandResp(0) = 1] = 1− Pr[RandResp(0) = 0] = Pr[b = 0 ∧ flip() = 1] = 1/4 (4)

So we see that RandResp outputs the correct value of F (x) with fairly high probability
of 3/4, and an incorrect “random” value with probability 1/4. In other words, most of
the time the attacker is safe in assuming that RandResp outputs exactly the same value
as F (x), and so can go about inferring x by computing feasible sets as before.

This isn’t to say that randomized response does nothing to protect x, and indeed it
may offer ample protection for many applications because the attacker still has more
uncertainty than they would otherwise. But by reasoning about the probabilities of
various outcomes and what the attacker is able to infer from them, we arrived at a
much more nuanced view of the degree of security than was suggested by looking at
the feasible set of RandResp alone.
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2.1 Quantifying a tradeoff

There are some arbitrary choices that have been made in this conception of randomized
response, and they influence the degree of adversarial uncertainty of the secret input
x. In particular, we could generalize flip() by adding a parameter 0 ≤ p ≤ 1 controlling
the bias of the coin.

flip(p) =

{
1 with probability p
0 with probability 1− p (5)

We could use this in RandResp as follows, assuming p is chosen to be some constant in
advance.

b := flip(p)
if b = 1 then
o := F (x)
else
o := flip(p)

(6)

Then updating the analysis we did before with this more general solution, we see that:

Pr[RandResp(x) = F (x)] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = F (x)]

= p+ (1− p)Pr[F (x) = flip(p)] (7)

When F is the identity function then we have,

Pr[RandResp(0) = 0] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 0] = p+ (1− p)2

Pr[RandResp(1) = 1] = Pr[b = 1] + Pr[b = 0 ∧ flip(p) = 1] = p+ (1− p)p = 2p− p2

So if we set p ≥ 1/2, then we would be sure to have a more accurate answer in the
sense that RandResp returns F (x) with greater likelihood. But this comes at a tradeoff
in information flow security, as the attacker can also be more confident (less uncertain)
about the feasible set. Likewise, smaller values of p lead to a less accurate solution, but
increase the attacker’s uncertainty and so afford greater security.

3 Differential Privacy

Now we will turn to a property that is useful in many cases for characterizing the ad-
versarial uncertainty one obtains through the use of randomized computation. In this
setting, we will assume that the program αmakes use of memory operations, and wants
to prevent too much information about the contents of any cell in Mem from leaking
through its output result. It is called differential privacy, and is an active area of study
and application.

In the following, we will assume that all of the indices in Mem are secret and so typed
H, and that all of the variables used by the program are typed L. So intuitively, think
of the memory Mem as perhaps being a input where each cell holds the data of one
individual that is to be used by α. The developer of α wishes to compute some useful
aggregate fact about the individuals’ data, and will store the result in the variables of
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the final state Ev((ω, Mem), α). The goal is to make sure that the results do not reveal too
much information about any single individual’s data stored in Mem.

Definition 2. ε-Differential Privacy. Let ε > 0. A program α satisfies ε-differential pri-
vacy if for all possible memory configurations Mem1, Mem2 that differ in exactly one index,
and all states ω, ν, the following inequality holds:

Pr[Ev((ω, Mem1), α) = ν] ≤ eε × Pr[Ev((ω, Mem2), α) = ν] (8)

The probabilities in this expression are taken over the randomness of α’s computation.

The fact that α is a program that does not explicitly “output” a single value is indeed
irrelevant to the essence of this definition. It may be clearer for some to just think of α
as a function that takes a memory configurationX as input and returns a single discrete
value rather than a state. This leads to the following equivalent definition.

Definition 3. ε-Differential Privacy (functional form). Let ε > 0. A function α satisfies
ε-differential privacy if for all possible inputs X1 and X2 that differ in exactly one index,
and all return values s ∈ Range(α), the following inequality holds:

Pr[α(X1) = s] ≤ eε × Pr[α(X2) = s] (9)

The probabilities in this expression are taken over the randomness of α’s outputs.

To keep notation as simple as possible, we will stick with the latter form of the defi-
nition for the remainder of the lecture.

First, notice that Definition 3 is a property of the function α, and not of the data
being computed on or any particular output of α. In other words, when we speak of
something as being differentially private, we are always referring to a process used to
compute outputs from secret inputs. You may at times hear people refer to a piece
of data as “differentially private”, but do not get confused; when used correctly, this
language means that the data was computed by a function that satisfies ε-differential
privacy.

Second, the ε in Definition 3 is called the privacy budget, and controls the tradeoff
between privacy and accuracy in much the same way that p did in our randomized
response example before. We’ll get into some high-level intuitive interpretations of this
definition in a little while, but first let’s think about its various components and how
they relate to α’s behavior directly.

Privacy budget ε. We hinted earlier that the privacy budget has an influence on both
the degree of privacy established by the function, as well as the degree of approxima-
tion in the results. ε is our privacy budget, and it is a numeric real-valued quantity. To
understand what it means, let’s look at the behavior of an ε-differentially private α for
extremal values of ε.

Suppose that we make ε = 0. Then Definition 3 requires that for any X1, X2 that
differ in one index, Equation 9 holds. However, notice that the definition is symmetric
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in the values that X1, X2 take; there is nothing that distinguishes them from eachother,
so α must also satisfy:

Pr[α(X2) = s] ≤ Pr[α(X1) = s] (10)

Combining equations 9 and 10, it must be that Pr[α(X1) = s] = Pr[α(X2) = s] for all
X1, X2 that differ in one index. What does this mean for the privacy of individuals in
X1 and X2, and the utility of α?

• When it comes to privacy, we can conclude that ε = 0 implies no leakage of
information about the contents of any individual. Why does this hold for any
index? Recall that Definition 3 needs to hold for all pairs X1, X2. So, if our actual
input is X1, then all input X2 that we obtain by changing a index in X1 must
produce the same distribution of outputs in α.

• As for utility, you probably guessed that ε = 0 isn’t great. In fact, because α’s out-
put distribution needs to remain the same for all adjacent inputs, we can observe
that by transitivity α’s output distribution needs to remain the same for all inputs.
In other words, the results can’t contain any information about the input, which
clearly means no utility is possible.

Clearly, ε = 0 is good in terms of privacy but terrible for utility. We might expect that
when ε is large, say 10, then the opposite is true. Note that e10 ≈ 22, 000. Probabilities
range in [0, 1], so in order for Equation 9 to place any meaningful limits on α’s behavior,
e.g. a limit on Pr[α(X) = s] for some s, the probability of returning s on the neighboring
input would need to be quite small (∼ 4.5×10−5). Conversely, because this large ε gives
α quite a bit of freedom in its behavior, utility is not a problem.

So as ε grows, the privacy offered by ε-differential privacy drops off very quickly,
and the utility begins to approach what we could achieve from return the exact answer
without randomness.

Neighboring inputs. Definition 3 quantifies universally over pairs of inputs X1, X2

that differ in one index. Such pairs are called neighbors. What exactly do we mean by
“differ in one index”? First of all, it’s important to mention that we aren’t concerned
with the order of elements in X1, X2, so that if they were permutations of each other,
we would consider them to be the same1. There are two reasonable interpretations.

1. X1 and X2 are identical, except that X1 has an additional index that X2 doesn’t.
So if we view inputs as sets (assuming all indices are unique within each input),
then |X2| = |X1| − 1 and X2 ⊆ X1, X2 = X1 ∪ {xm} for some xm.

2. X1 and X2 have the same number of indices, but the value of one index is differ-
ent. In other words, we could find a permutation ofX1 such thatX1[1 . . . N−1] =
X2[1 . . . N − 1], and X1[N ] 6= X2[N ].

We will use by convention the latter definition of neighboring inputs.
1Usually the queries performed in this model are associative with respect to indices, so from the user’s

perspective, permuted inputs are the same

15-316 LECTURE NOTES MATT FREDRIKSON



Provable Privacy L16.7

Randomized α. Is it essential thatα be a random function? First of all, the Definition 3
is an inequality over probabilities, and the only source of randomness comes from α. So
in a technical sense, we are required to assign probabilities to α’s responses. However,
we can interpret deterministic functions as a special case of randomized functions, so
let’s think about which deterministic functions might satisfy the definition.

Suppose that X1 = [0, 0, 0] and X2 = [0, 0, 1], and α(X1) = s. Any deterministic α
whose value depends on the last element, so that α(X2) = s′ where s 6= s′ will give us:

Pr[α(X1) = s] = 1,Pr[α(X2) = s] = 0

so that for any ε Equation 9 fails to hold. Because the order of elements in X1, X2

doesn’t matter, this means that α’s response can’t depend on any index in X . Thus, the
only deterministic functions that satisfy Definition 3 are constant.

3.1 Interpreting the Definition

Now that we’ve thought about the definition and some of its technical implications,
let’s think about what it means for privacy.

Inference and protection from harm. One view of privacy is that it is about pro-
tecting individuals from harm that may arise from the release of their data. By learning
things about individuals, a party with corrupt intent might use that information to limit
their opportunities (e.g., deny them a job or a loan), offer differentiated services (e.g.,
higher prices for customers from affluent areas), or otherwise discriminate against them
in numerous ways that play against their advantage.

One question that we might ask is, why not strive for a definition that prevents such
parties from learning anything new about an individual from a result involving their
data? If nothing new about the individual can be learned from the release, then no
harm can follow. Researchers have contemplated this possibility before [Dwo06], and
not suprisingly it turns out that doing so is at fundamental odds with a simultaneous
goal of extracting useful insights from personal information.

Differential privacy aims to protect individuals from such harm to the greatest extent
possible. The key to this is the relative nature of the definition. Rather than trying to
prevent users from learning anything about an individual, we can think of the definition
as trying to prevent users from learning new things about an individual relative to what
they could have learned had the individual not shared their data. This is where the idea
of neighboring inputs comes from: a neighboring input is one in which a particular
individual’s data takes a different value, which we can view as being a input where
everyone except that individual shared (i.e., some other individual took their place).
Differential privacy requires that any output of α be approximately as likely in both
cases: one where the individual shared their data, and one where they did not.

For example, suppose that you are given the opportunity to share your medical
records with a researcher who will use them in a study intended to improve treat-
ments. You may rightly be concerned that if the researcher publishes results based
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on your data, a data-savvy insurance provider might be able to infer something about
your health status from these results in the future, and decide to raise your premi-
ums or deny coverage. However, if the researcher applied differential privacy with an
appropriately-chosen ε, then you might be reassured that no results that could come
of the study would be that much more or less likely because of your decision to share.
It follows that if an insurer were to base their decision on those differentially-private
results, then they are similarly not much more or less likely to deny you coverage.

Plausible deniability. Another way of looking at the protection given by differential
privacy is in terms of plausible deniability, or one’s ability to make a believable claim
that their data takes some value of their choosing, i.e., to “deny” a claim that their data
took the value it did. Because Definition 3 requires that the likelihood of α responding
with any value s is nearly identical regardless of what value the individual’s data took,
it would indeed be reasonable for the individual to claim that their data took another
value; the probability of producing s would be about the same no matter what value
they chose.

Indistinguishability and influence. Another way of viewing the definition, which
brings us closer to the semantics of the computation done by α, is in terms of how
much individuals’ data can influence, or cause changes to, α’s response. We’ve talked
about influence before in the context of noninterference, which required that the H-
typed initial state have no influence on the L-typed final state:

∀ω1, ω2.ω1 ≈L ω2 → Ev(ω1, c) ≈L Ev(ω2, c) (11)

We might rewrite Definition 3 more concisely as follows.

∀X1, X2.Neighbor(X1, X2)→ ∀s.Pr[α(X1) = s] ≤ eε × Pr[α(X2) = s] (12)

Notice the similarities between Equations 11 and 12.

• In both cases, the definitions quantify over all pairs of inputs (i.e., initial states)
that are related in a way that reflects what we are trying to protect. For nonin-
terference, the relation does this by only constraining the L variables, so that the
final state is indistinguishable regardless of the initial H variables. For differential
privacy, the neighbor relation works similarly by letting each individual’s data
take an arbitrary value, and fixing the rest of the input.

• The right-hand side of the implication in each case describes the sort of changes
that inputs, and more precisely inputs described by the left-hand side, are al-
lowed to cause. Noninterference rules out any changes to L variables, whereas
differential privacy places limits on the probability of variation in the response.

Viewed this way, differential privacy is a property which states that the influence of in-
dividual indices on α’s response should remain low, so that responses computed under
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neighboring inputs are “almost” indistinguishable. This is the essential property that
allows for plausible deniability and protection from harm, and the core of differential
privacy’s strong guarantees.

Recall also that we were able to prove that programs satisfy noninterference, even
to the point of designing type systems that simplify the task of writing noninterferent
programs, and can be checked efficiently. Given the similarity between Equations 11
and 12, it should not be too surprising that we can also prove program’s adherence
to differential privacy. This is part of the appeal of using the definition in practice: it
provides a crisp mathematical formulation of what it means to be private, that can be
proved on real computations.

3.2 Proving differential privacy: randomized response

Now let’s go back to our example of randomized response. Does it satisfy differential
privacy? Let’s keep things simple and assume that F is the identity function that just
returns the contents of Mem(0), p = 1/2 and all variables and memory cells hold values
in the set {0, 1}. This corresponds to the following program.

b := flip(p)
if b = 1 then
o := Mem(0)

else
o := flip(p)

(13)

It turns out that this does indeed satisfy ε-differential privacy.

Theorem 4. The procedure RandResp satisfies ln(3)-differential privacy when p = 1/2, F (Mem) =
Mem(0), and Mem(0) ∈ {0, 1}.

Proof. Recall that we need to show that the following inequality holds over all pairs of
neighboring inputs and all outputs s:

Pr[RandResp(X1) = s] ≤ eε × Pr[RandResp(X2) = s]

Because this instantiation of randomized response only depends on the contents of a
single memory cell, i.e. Mem(0), There are two possible configurations of neighboring
inputs: X1 = {0 7→ 1}, X2 = {0 7→ 0} and X1 = {0 7→ 0}, X2 = {0 7→ 1}.

Let’s consider the first configuration, for the case where the output is 1. We see that:

Pr[RandResp({0 7→ 1}) = 1] = Pr[b1 = 1] + Pr[b1 = 0 ∧ flip(p) = 1]

= p+ (1− p)p
= 2p− p2 = 3/4

Now for the right-hand side of the inequality with input X2, the only way for the pro-
gram to have output 1 given that Mem(0) = 0 would be for the first call to flip() assigned
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to b1 to have returned 0. Then

Pr[RandResp({0 7→ 0}) = 1] = Pr[b1 = 0 ∧ b2 = 1]

= (1− p)p
= p− p2 = 1/4

So we have:

Pr[RandResp({0 7→ 1}) = 1]

Pr[RandResp({0 7→ 0}) = 1]
=

3/4

1/4
= 3

Now let’s consider the case where the output is 0.

Pr[RandResp({0 7→ 1}) = 0] = Pr[b1 = 0 ∧ flip(p) = 0]

= (1− p)2

= 1− (2p− p2) = 1/4

And for the other side:

Pr[RandResp({0 7→ 0}) = 0] = Pr[b1 = 1] + Pr[b1 = 0 ∧ flip(p) = 0]

= p+ (1− p)(1− p)
= 1− (p− p2) = 3/4

So then,

Pr[RandResp({0 7→ 1}) = 0]

Pr[RandResp({0 7→ 0}) = 0]
=

1/4

3/4
= 1/3

So for the first configuration,

∀X1, X2, s.Neighbor(X1, X2)→ Pr[RandResp(X1) = s] ≤ 3× Pr[RandResp(X2) = s]

What is the corresponding privacy budget? We have only to solve for ε after equating
eε with 3 from the equation immediately above. So ε = ln(3). Then the theorem holds
in this configuration.

Now moving on to the other possible configuration of neighboring inputs, X1 =
{0 7→ 0}, X2 = {0 7→ 1}, we see that:

Pr[RandResp({0 7→ 0}) = 1] = Pr[b1 = 0 ∧ flip(p) = 1] = (1− p)p = 1/4

Pr[RandResp({0 7→ 1}) = 1] = Pr[b1 = 1] + Pr[b1 = 0 ∧ flip(p) = 1] = p+ (1− p)p = 3/4

So indeed the probabilities are simply inverted in this case, giving us,

Pr[RandResp({0 7→ 0}) = 1]

Pr[RandResp({0 7→ 1}) = 1]
= 1/3
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It is not difficult to see that for the other outcome,

Pr[RandResp({0 7→ 0}) = 0]

Pr[RandResp({0 7→ 1}) = 0]
= 3

Again for this configuration, ε = ln(3), so the theorem holds in all cases and we con-
clude that RandResp satisfies ln(3)-differential privacy.

A good exercise is to generalize Theorem 4 so that p takes an arbitrary value between
0 and 1, letting users tune the privacy budget by setting p. Notice that we used an infor-
mal proof even though the primary object of analysis in this theorem was a program. It
is possible to prove this theorem more formally, but to do so we would need a formal
semantics for the programming language with random elements (e.g., flip(p)), and logic
for expressing properties of this language like dynamic logic, and sound proof rules for
that logic. Such things exist, and also remain an active area of research, but are beyond
the scope of this class.

4 Composing Differentially-Private Computations

There are many algorithms beyond randomized response that have been rigorously
shown to satisfy differential privacy. Indeed, we could fill at least one semester-long
course covering only a subset of them, and our goals in this class are more broad. If
you are interested in this topic, then please consult the papers in the references section
of these notes [CMS11, EKP14, McS09], and in particular the text by Cynthia Dwork
and Aaron Roth [DR14], for more on these algorithms.

For the rest of the lecture, we will assume that we are in possession of a algorithm
α1, . . . , αn that have already been shown to be differentially private. Our goal is to
use them through some composition to implement a larger program that we can by
extension show satisfies differential privacy. To support this, we will develop a set of
composition theorems that allow us to draw such conclusions from the assumption that
sub-components satisfy εi-DP.

Post-processing. The first important property we’ll discuss covers post-processing,
or computations that are performed that take the result of a differentially-private func-
tion as input. Differential privacy enjoys a post-processing guarantee when the post-
processor is deterministic, as shown in Theorem 5.

Theorem 5. Post-processing. Let α : X 7→ O be a randomized ε-differentially private function,
and f : O 7→ Y be any deterministic function. Then f ◦ α is ε-differentially private.

Proof. Let X1, X2 be neighboring inputs, and Y ∈ Y be any output of f . Let I ∈ O be
such that f(I) = Y . Then,

Pr[f(α(X1)) = Y ] = Pr[α(X1) = I]

≤ eεPr[α(X2) = I]

= eεPr[f(α(X2)) = Y ]
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The usefulness of the post-processing theorem is apparent: we can always perform
deterministic computations over data produced by ε-DP computations, and still arrive
at ε-DP results. Intuitively, the information content of a signal cannot be increased
by local deterministic processing. If the input to f contains no information about an
individual, then f cannot add any.

Sequential composition. The next type of composition that we’ll consider applies a
sequence of functions αi, each of which provide εi-differential privacy, and releases the
union of their results. We can still obtain a privacy guarantee, but the budgets increase
additively.

Theorem 6. (Sequential Composition [McS09]) Let αi : X 7→ O, 1 ≤ i ≤ n be a sequence of
n randomized εi-differentially private functions, and let α(X) = (α1(X), . . . , αn(X)). Then
α is (

∑
1≤i≤n εi)-differentially private.

Proof. Let O ∈ On be some value in the range of α, and X1, X2 be neighboring inputs.
Then we can simply calculate:

Pr[α(X1) = O]

Pr[α(X2) = O]
=

∏
1≤i≤n Pr[αi(X1) = O]∏
1≤i≤n Pr[αi(X2) = O]

=

(
Pr[α1(X1) = O]

Pr[α1(X2) = O]

)
· · ·
(

Pr[αn(X1) = O]

Pr[αn(X2) = O]

)
≤ eε1 · · · eεn

= eε1+···+εn

The sequential composition theorem is crucial for any practical system that hopes
to achieve differential privacy. Notably, it implies that for a fixed privacy budget ε, it
isn’t safe to apply a differentially-private computation an arbitrary number of times
to the same input X . If the total sum of the computations’ budgets exceeds ε, then
the composed computation is no longer ε-differentially private. If we want to ensure a
certain level of privacy in a computation composed of multiple queries, then we need to
carefully account for the amount of privacy budget that is “consumed” by each query.
If the amount ever exceeds our budget, then we can never answer another query from
that input.

Parallel composition. The last form of composition that we’ll look at is targeted to-
wards the use of multiple differentially-private queries over disjoint partitions of X .

Theorem 7. (Parallel Composition [McS09]) Let αi : X 7→ O, 1 ≤ i ≤ n be a sequence of
n randomized εi-differentially private functions, P1, . . . , Pn be disjoint subsets of X , and let
α(X) = (α1(P1), . . . , αn(Pn)). Then α is (max1≤i≤n εi)-differentially private.
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Proof. Let O ∈ On be some value in the range of α, and X1, X2 be neighboring inputs.
Let P1,1, . . . , P1,n be the disjoint subsets of X1, and P2,1, . . . , P2,n similarly for X2. Ob-
serve that there is only one partition index, i, at which P1,i and P2,i differ. Assume
without loss of generality that the index is 1. Then:

Pr[α(X1) = O]

Pr[α(X2) = O]
=

∏
1≤i≤n Pr[αi(P1,i) = O]∏
1≤i≤n Pr[αi(P2,i) = O]

=
Pr[α1(X1) = O]

Pr[α1(X2) = O]

≤ max
1≤i≤n

εi

The second line follows because we assumed that the differing index occured in the
first partition, so: ∏

2≤i≤n
Pr[αi(P1,i) = O] =

∏
2≤i≤n

Pr[αi(P2,i) = O]

The last line follows under the pessimistic assumption that the largest εi applies to the
first partition.

Parallel composition is probably not as widely applicable as the sequential form, but
can be very useful in certain cases because it does not expend privacy budget addi-
tively. Whenever computations can be broken into smaller sub-computations over dis-
joint data, applying the parallel composition theorem followed by post-processing can
lead to strong utility for a fixed privacy budget.
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